Home About us Contact | |||
Negative Modulator (negative + modulator)
Selected AbstractsMultiple roles of Lyn kinase in myeloid cell signaling and functionIMMUNOLOGICAL REVIEWS, Issue 1 2009Patrizia Scapini Summary:, Lyn is an Src family kinase present in B lymphocytes and myeloid cells. In these cell types, Lyn establishes signaling thresholds by acting as both a positive and a negative modulator of a variety of signaling responses and effector functions. Lyn deficiency in mice results in the development of myeloproliferation and autoimmunity. The latter has been attributed to the hyper-reactivity of Lyn-deficient B cells due to the unique role of Lyn in downmodulating B-cell receptor activation, mainly through phosphorylation of inhibitory molecules and receptors. Myeloproliferation results, on the other hand, from the enhanced sensitivity of Lyn-deficient progenitors to a number of colony-stimulating factors (CSFs). The hyper-sensitivity to myeloid growth factors may also be secondary to poor inhibitory receptor phosphorylation, leading to impaired recruitment/activation of tyrosine phosphatases and reduced downmodulation of CSF signaling responses. Despite these observations, the overall role of Lyn in the modulation of myeloid cell effector functions is much less well understood, as often both positive and negative roles of this kinase have been reported. In this review, we discuss the current knowledge of the duplicitous nature of Lyn in the modulation of myeloid cell signaling and function. [source] DNA methylation and histone modifications cause silencing of Wnt antagonist gene in human renal cell carcinoma cell linesINTERNATIONAL JOURNAL OF CANCER, Issue 3 2008Ken Kawamoto Abstract Secreted frizzled-related protein 2 (sFRP2) is a negative modulator of the Wingless-type (Wnt) signaling pathway, and shown to be inactivated in renal cell carcinoma (RCC). However, the molecular mechanism of silencing of sFRP2 is not fully understood. Our study was designed to elucidate the silencing mechanism of sFRP2 in RCC. Expression of sFRP2 was examined in 20 pairs of primary cancers by immunohistochemistry. Kidney cell lines (HK-2, Caki-1, Caki-2, A-498 and ACHN) were analyzed for sFRP2 expression using real-time RT-PCR and Western blotting. The methylation status at 46 CpG sites of the 2 CpG islands in the sFRP2 promoter was characterized by bisulfite DNA sequencing. Histone modifications were assessed by chromatin immunoprecipitation (ChIP) assay using antibodies against AcH3, AcH4, H3K4 and H3K9. sFRP2 was frequently repressed in primary cancers and in RCC cells. The majority of sFRP2 negative cells had a methylated promoter. Meanwhile, sFRP2 expression was repressed by a hypomethylated promoter in Caki-1 cells, and these cells had a repressive histone modification at the promoter. In Caki-1 cells, sFRP2 was reactivated by trichostatin A (TSA). Repressive histone modifications were also observed in RCC cells with hypermethylated promoters, but sFRP2 was reactivated only by 5-aza-2,-deoxycytidine (DAC) and not by TSA. However, the activation of the silenced sFRP2 gene could be achieved in all cells using a combination of DAC and TSA. This is the first report indicating that aberrant DNA methylation and histone modifications work together to silence the sFRP2 gene in RCC cells. © 2008 Wiley-Liss, Inc. [source] The solution structure of ZNF593 from Homo sapiens reveals a zinc finger in a predominately unstructured proteinPROTEIN SCIENCE, Issue 3 2008Paulette L. Hayes Abstract Here, we report the solution structure of ZNF593, a protein identified in a functional study as a negative modulator of the DNA-binding activity of the Oct-2 transcription factor. ZNF593 contains a classic C2H2 zinc finger domain flanked by about 40 disordered residues on each terminus. Although the protein contains a high degree of intrinsic disorder, the structure of the zinc finger domain was resolved by NMR spectroscopy without a need for N- or C-terminal truncations. The tertiary structure of the zinc finger domain is composed of a ,-hairpin that positions the cysteine side chains for zinc coordination, followed by an atypical kinked ,-helix containing the two histidine side chain ligands. The structural topology of ZNF593 is similar to a fragment of the double-stranded RNA-binding protein Zfa and the C-terminal zinc finger of MBP-1, a human enhancer binding protein. The structure presented here will provide a guide for future functional studies of how ZNF593 negatively modulates the DNA-binding activity of Oct-2, a POU domain-containing transcription factor. Our work illustrates the unique capacity of NMR spectroscopy for structural analysis of folded domains in a predominantly disordered protein. [source] ATP and UTP at low concentrations strongly inhibit bone formation by osteoblasts: A novel role for the P2Y2 receptor in bone remodelingJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2002Astrid Hoebertz Abstract There is increasing evidence that extracellular nucleotides act on bone cells via multiple P2 receptors. The naturally-occurring ligand ATP is a potent agonist at all receptor subtypes, whereas ADP and UTP only act at specific receptor subtypes. We have reported that the formation and resorptive activity of rodent osteoclasts are stimulated powerfully by both extracellular ATP and its first degradation product, ADP, the latter acting at nanomolar concentrations, probably via the P2Y1 receptor subtype. In the present study, we investigated the actions of ATP, ADP, adenosine, and UTP on osteoblastic function. In 16,21 day cultures of primary rat calvarial osteoblasts, ADP and the selective P2Y1 agonist 2-methylthioADP were without effect on bone nodule formation at concentrations between 1 and 125 ,M, as was adenosine. However, UTP, a P2Y2 and P2Y4 receptor agonist, known to be without effect on osteoclast function, strongly inhibited bone nodule formation at concentrations ,,1 ,M. ATP was inhibitory at ,,10 ,M. Rat osteoblasts express P2Y2, but not P2Y4 receptor mRNA, as determined by in situ hybridization. Thus, the low-dose effects of extracellular nucleotides on bone formation and bone resorption appear to be mediated via different P2Y receptor subtypes: ADP, signalling through the P2Y1 receptor on both osteoclasts and osteoblasts, is a powerful stimulator of osteoclast formation and activity, whereas UTP, signalling via the P2Y2 receptor on osteoblasts, blocks bone formation by osteoblasts. ATP, the ,universal' agonist, can simultaneously stimulate resorption and inhibit bone formation. These findings suggest that extracellular nucleotides could function locally as important negative modulators of bone metabolism, perhaps contributing to bone loss in a number of pathological states. J. Cell. Biochem. 86: 413,419, 2002. © 2002 Wiley-Liss, Inc. [source] The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in ArabidopsisTHE PLANT JOURNAL, Issue 1 2008Ian H. Street Summary SOB3, which encodes a plant-specific AT-hook motif containing protein, was identified from an activation-tagging screen for suppressors of the long-hypocotyl phenotype of a weak phyB allele, phyB-4. sob3-D (suppressor of phyB-4#3 dominant) overexpressing seedlings have shorter hypocotyls, and as adults develop larger flowers and leaves, and are delayed in senescence compared with wild-type plants. At the nucleotide level, SOB3 is closely related to ESCAROLA (ESC), which was identified in an independent activation-tagging screen. ESC overexpression also suppresses the phyB-4 long-hypocotyl phenotype, and confers an adult morphology similar to sob3-D, suggesting similar functions. Analysis of transgenic plants harboring SOB3:SOB3-GUS or ESC:ESC-GUS translational fusions, driven by their endogenous promoter regions, showed GUS activity in the hypocotyl and vasculature tissue in light- and dark-grown seedlings. A loss-of-function SOB3 allele (sob3-4) was generated through an ethyl methanesulfonate intragenic suppressor screen of sob3-D phyB-4 plants, and this allele was combined with a predicted null allele, disrupting ESC (esc-8), to examine potential genetic interactions. The sob3-4 esc-8 double mutant had a long hypocotyl in multiple fluence rates of continuous white, far-red, red and blue light. sob3-4 esc-8 phyB-9 and sob3-4 esc-8 cry-103 triple mutants also had longer hypocotyls than photoreceptor single mutants. In contrast, the sob3-4 esc-8 phyA-211 triple mutant was the same length as phyA-211 single mutants. Taken together, these data indicate that SOB3 and ESC act redundantly to modulate hypocotyl growth inhibition in response to light. [source] The effect of ageing on macrophage Toll-like receptor-mediated responses in the fight against pathogensCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2010C. R. Dunston Summary The cellular changes during ageing are incompletely understood yet immune system dysfunction is implicated in the age-related decline in health. The acquired immune system shows a functional decline in ability to respond to new pathogens whereas serum levels of cytokines are elevated with age. Despite these age-associated increases in circulating cytokines, the function of aged macrophages is decreased. Pathogen-associated molecular pattern receptors such as Toll-like receptors (TLRs) are vital in the response of macrophages to pathological stimuli. Here we review the evidence for defective TLR signalling in normal ageing. Gene transcription, protein expression and cell surface expression of members of the TLR family of receptors and co-effector molecules do not show a consistent age-dependent change across model systems. However, there is evidence for impaired downstream signalling events, including inhibition of positive and activation of negative modulators of TLR induced signalling events. In this paper we hypothesize that despite a poor inflammatory response via TLR activation, the ineffective clearance of pathogens by macrophages increases the duration of their activation and contributes to perpetuation of inflammatory responses and ageing. [source] |