Neck Length (neck + length)

Distribution by Scientific Domains


Selected Abstracts


Variation in mammalian proximal femoral development: comparative analysis of two distinct ossification patterns

JOURNAL OF ANATOMY, Issue 3 2007
Maria A. Serrat
Abstract The developmental anatomy of the proximal femur is complex. In some mammals, including humans, the femoral head and greater trochanter emerge as separate ossification centres within a common chondroepiphysis and remain separate throughout ontogeny. In other species, these secondary centres coalesce within the chondroepiphysis to form a single osseous epiphysis much like the proximal humerus. These differences in femoral ontogeny have not been previously addressed, yet are critical to an understanding of femoral mineralization and architecture across a wide range of mammals and may have key implications for understanding and treating hip abnormalities in humans. We evaluated femora from 70 mammalian species and categorized each according to the presence of a ,separate' or ,coalesced' proximal epiphysis based on visual assessment. We found that ossification type varies widely among mammals: taxa in the ,coalesced' group include marsupials, artiodactyls, perissodactyls, bats, carnivores and several primates, while the ,separate' group includes hominoids, many rodents, tree shrews and several marine species. There was no clear relationship to body size, phylogeny or locomotion, but qualitative and quantitative differences between the groups suggest that ossification type may be primarily an artefact of femoral shape and neck length. As some osseous abnormalities of the human hip appear to mimic the normal morphology of species with coalesced epiphyses, these results may provide insight into the aetiology and treatment of human hip disorders such as femoroacetabular impingement and early-onset osteoarthritis. [source]


Genome-wide pleiotropy of osteoporosis-related phenotypes: The framingham study

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2010
David Karasik
Abstract Genome-wide association studies offer an unbiased approach to identify new candidate genes for osteoporosis. We examined the Affymetrix 500K,+,50K SNP GeneChip marker sets for associations with multiple osteoporosis-related traits at various skeletal sites, including bone mineral density (BMD, hip and spine), heel ultrasound, and hip geometric indices in the Framingham Osteoporosis Study. We evaluated 433,510 single-nucleotide polymorphisms (SNPs) in 2073 women (mean age 65 years), members of two-generational families. Variance components analysis was performed to estimate phenotypic, genetic, and environmental correlations (,P, ,G, and ,E) among bone traits. Linear mixed-effects models were used to test associations between SNPs and multivariable-adjusted trait values. We evaluated the proportion of SNPs associated with pairs of the traits at a nominal significance threshold ,,=,0.01. We found substantial correlation between the proportion of associated SNPs and the ,P and ,G (r,=,0.91 and 0.84, respectively) but much lower with ,E (r,=,0.38). Thus, for example, hip and spine BMD had 6.8% associated SNPs in common, corresponding to ,P,=,0.55 and ,G,=,0.66 between them. Fewer SNPs were associated with both BMD and any of the hip geometric traits (eg, femoral neck and shaft width, section moduli, neck shaft angle, and neck length); ,G between BMD and geometric traits ranged from ,0.24 to +0.40. In conclusion, we examined relationships between osteoporosis-related traits based on genome-wide associations. Most of the similarity between the quantitative bone phenotypes may be attributed to pleiotropic effects of genes. This knowledge may prove helpful in defining the best phenotypes to be used in genetic studies of osteoporosis. © 2010 American Society for Bone and Mineral Research [source]


Necks-for-sex or competing browsers?

JOURNAL OF ZOOLOGY, Issue 1 2010
A critique of ideas on the evolution of giraffe
Abstract Recent years have witnessed a resurgence in tests of the evolution and origin of the great height and long neck of the giraffe Giraffa camelopardalis. The two main hypotheses are (1) long necks evolved through competition with other browsers allowing giraffe to feed above them (,competing browsers' hypothesis); or (2) the necks evolved for direct use in intra-sexual combat to gain access to oestrous females (,necks-for-sex' hypothesis). Here, we review recent developments and their relative contribution in explaining giraffe evolution. Trends from Zimbabwean giraffes show positive allometry for male necks and isometry for female necks relative to body mass, while comparative analyses of the cervical versus the total vertebral column of the giraffe, okapi and fossil giraffe suggest selection specifically on neck length rather than on overall height. Both support the necks-for-sex idea. Neither study, however, allows us to refute one of the two ideas. We suggest new approaches for quantifying the relative importance of the two hypotheses. A direct analysis of selection pressure on neck length via survival and reproduction should clarify the mechanism maintaining the trait, while we predict that short robust ossicones should have arisen concurrently with incipient neck elongation if sexual selection was the main selective driver. The main challenge for the competing browser hypothesis is to explain why giraffe have remained about 2 m taller than their tallest competitors for over 1 Myr, whereas the sexual selection hypothesis cannot provide an adaptive explanation for the long neck of female giraffe. We conclude that probably both mechanisms have contributed to the evolution and maintenance of the long neck, and their relative importance can be clarified further. [source]


Sexual selection is not the origin of long necks in giraffes

JOURNAL OF ZOOLOGY, Issue 4 2009
G. Mitchell
Abstract The evolutionary origin of the long neck of giraffes is enigmatic. One theory (the ,sexual selection' theory) is that their shape evolved because males use their necks and heads to achieve sexual dominance. Support for this theory would be that males invest more in neck and head growth than do females. We have investigated this hypothesis in 17 male and 21 female giraffes with body masses ranging from juvenile to mature animals, by measuring head mass, neck mass, neck and leg length and the neck length to leg length ratio. We found no significant differences in any of these dimensions between males and females of the same mass, although mature males, whose body mass is significantly (50%) greater than that of mature females, do have significantly heavier (but not longer) necks and heavier heads than mature females. We conclude that morphological differences between males and females are minimal, that differences that do exist can be accounted for by the larger final mass of males and that sexual selection is not the origin of a long neck in giraffes. [source]


Functional variation of neck muscles and their relation to feeding style in Tyrannosauridae and other large theropod dinosaurs

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 8 2007
Eric Snively
Abstract Reconstructed neck muscles of large theropod dinosaurs suggest influences on feeding style that paralleled variation in skull mechanics. In all examined theropods, the head dorsiflexor m. transversospinalis capitis probably filled in the posterior dorsal concavity of the neck, for a more crocodilian- than avian-like profile in this region. The tyrannosaurine tyrannosaurids Daspletosaurus and Tyrannosaurus had relatively larger moment arms for lateroflexion by m. longissimus capitis superficialis and m. complexus than albertosaurine tyrannosaurids, and longer dorsiflexive moment arms for m. complexus. Areas of dorsiflexor origination are significantly larger relative to neck length in adult Tyrannosaurus rex than in other tyrannosaurids, suggesting relatively large muscle cross-sections and forces. Tyrannosaurids were not particularly specialized for neck ventroflexion. In contrast, the hypothesis that Allosaurus co-opted m. longissimus capitis superficialis for ventroflexion is strongly corroborated. Ceratosaurus had robust insertions for the ventroflexors m. longissimus capitis profundus and m. rectus capitis ventralis. Neck muscle morphology is consistent with puncture-and-pull and powerful shake feeding in tyrannosaurids, relatively rapid strikes in Allosaurus and Ceratosaurus, and ventroflexive augmentation of weaker jaw muscle forces in the nontyrannosaurids. Anat Rec, 290:934,957, 2007. © 2007 Wiley-Liss, Inc. [source]


Ultrastructure of the Spermatozoa of the Yangtze Finless Porpoise (Neophocaena phocaenoides asiaeorientalis)

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 4 2009
H. Y. Li
Summary Semen sample was collected from two captive adult Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) during physical examination. One individual was aged about 9 years with body length 143 cm (total length) and body weight 46.1 kg in 2003. The age of the other was unknown and its body length was 147 cm and body weight was 43 kg in 2004. Ultrastructure of their spermatozoa was examined using scanning and transmission electron microscope. The sperm concentration was 4.17 × 109 spermatozoa per ml by the cytometer. The approximate dimensions of the spermatozoa were as follows: head length, 3.366 ± 0.140 ,m (mean ± SE, n = 15); head width, 1.896 ± 0.099 ,m (n = 15); and neck length, 1.004 ± 0.074 ,m (n = 10). The tail included midpiece, principal piece and terminal piece. The length of the midpiece was 1.882 ± 0.077 ,m (n = 9). There is no apparent boundary between the principal piece and the terminal piece, so the length of the principal piece and the terminal piece was 44.612 ± 3.485 ,m (n = 5). Total length of the spermatozoa was 53.314 ± 4.580 ,m (n = 10). The acrosome covered approximately 45.8% of the anterior portion of the head. [source]


Changes in proximal femoral mineral geometry precede the onset of radiographic hip osteoarthritis: The study of osteoporotic fractures

ARTHRITIS & RHEUMATISM, Issue 7 2009
M. K. Javaid
Objective Radiographic hip osteoarthritis (RHOA) is associated with increased hip areal bone mineral density (aBMD). This study was undertaken to examine whether femoral geometry is associated with RHOA independent of aBMD. Methods Participants in the Study of Osteoporotic Fractures in whom pelvic radiographs had been obtained at visits 1 and 5 (mean 8.3 years apart) and hip dual x-ray absorptiometry (DXA) had been performed (2 years after baseline) were included. Prevalent and incident RHOA phenotypes were defined as composite (osteophytes and joint space narrowing [JSN]), atrophic (JSN without osteophytes), or osteophytic (femoral osteophytes without JSN). Analogous definitions of progression were based on minimum joint space and total osteophyte score. Hip DXA scans were assessed using the Hip Structural Analysis program to derive geometric measures, including femoral neck length, width, and centroid position. Relative risks and 95% confidence intervals for prevalent, incident, and progressive RHOA per SD increase in geometric measure were estimated in a hip-based analysis using multinomial logistic regression with adjustment for age, body mass index, knee height, and total hip aBMD. Results In 5,245 women (mean age 72.6 years), a wider femoral neck with a more medial centroid position was associated with prevalent and incident osteophytic and composite RHOA phenotypes (P < 0.05). Increased neck width and centroid position were associated with osteophyte progression (both P < 0.05). No significant geometric associations with atrophic RHOA were found. Conclusion Differences in proximal femoral bone geometry and spatial distribution of bone mass occur early in hip OA and predict prevalent, incident, and progressive osteophytic and composite phenotypes, but not the atrophic phenotype. These bone differences may reflect responses to loading occurring early in the natural history of RHOA. [source]