Home About us Contact | |||
Neat Resin (neat + resin)
Selected AbstractsSome aspects of the mechanical response of BMI 5250-4 neat resin at 191°C: Experiment and modeling,JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008M. B. Ruggles-Wrenn Abstract The inelastic deformation behavior of BMI-5250-4 neat resin, a high-temperature polymer, was investigated at 191°C. The effects of loading rate on monotonic stress,strain behavior as well as the effect of prior stress rate on creep behavior were explored. Positive nonlinear rate sensitivity was observed in monotonic loading. Creep response was found to be significantly influenced by prior stress rate. Effect of loading history on creep was studied in stepwise creep tests, where specimens were subjected to a constant stress rate loading followed by unloading to zero stress with intermittent creep periods during both loading and unloading. The strain-time behavior was strongly influenced by prior deformation history. Negative creep was observed on the unloading path. In addition, the behavior of the material was characterized in terms of a nonlinear viscoelastic model by means of creep and recovery tests at 191°C. The model was employed to predict the response of the material under monotonic loading/unloading and multi-step load histories. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Fusion characteristics of rigid PVC/wood-flour composites by torque rheometryJOURNAL OF VINYL & ADDITIVE TECHNOLOGY, Issue 1 2007Laurent M. Matuana This study was aimed at examining the effects of wood flour contents, wood species (softwood vs. hardwood), and particle size on the fusion characteristics (fusion time, fusion temperature, fusion torque, and fusion energy) of rigid PVC/wood-flour composites in a torque rheometer. Neat rigid PVC exhibited one fusion peak, whereas the addition of wood flour into the PVC matrix led to two fusion peaks. Increased wood flour content caused a significant increase in the time, temperature, and energy at which fusion between the primary particles started, thereby leading to increased fusion torque, irrespective of the wood flour species. These results implied that rigid PVC filled with wood flour must be processed at higher temperatures than neat resin. Although fusion characteristics of the composites were influenced by the wood species, a clear trend between softwood and hardwood species could not be established. However, finer particles fused more quickly and needed less energy than coarse ones. J. VINYL ADDIT. TECHNOL., 13:7,13, 2007. © 2007 Society of Plastics Engineers. [source] Novel Thermoplastic Composites from Commodity Polymers and Man-Made Cellulose FibersMACROMOLECULAR SYMPOSIA, Issue 1 2006Hans-Peter Fink Abstract Summary: A new class of fibre reinforced commodity thermoplastics suited for injection moulding and direct processing applications has been developed using man-made cellulosic fibres (Rayon tire yarn, Tencel, Viscose, Carbacell) and thermoplastic commodity polymers, such as polypropylene (PP), polyethylene (PE), high impact polystyrene (HIPS), poly(lactic acid) (PLA), and a thermoplastic elastomer (TPE) as the matrix polymer. For compounding, a specially adapted double pultrusion technique has been employed which provides composites with homogeneously distributed fibres. Extensive investigations were performed with Rayon reinforced PP in view of applications in the automotive industry. The Rayon-PP composite is characterized by high strength and an excellent impact behaviour as compared with glass fibre reinforced PP, thus permitting applications in the field of engineering thermoplastics such as polycarbonate/acrylonitrile butadiene styrene blends (PC/ABS). With the PP based composites the influence of material parameters (e.g. fibre type and load, coupling agent) were studied and it has been demonstrated how to tailor the desired composite properties as modulus and heat distortion temperature (HDT) by varying the fibre type or adding inorganic fillers. Man-made cellulose fibers are also suitable for the reinforcement of further thermoplastic commodity polymers with appropriate processing temperatures. In case of PE modulus and strength are tripled compared to the neat resin while Charpy impact strength is increased five-fold. For HIPS mainly strength and stiffness are increased, while for TPE the property profile is changed completely. With Rayon reinforced PLA, a fully biogenic and biodegradable composite with excellent mechanical properties including highly improved impact strength is presented. [source] Influence of carbon nanotube dispersion on the mechanical properties of phenolic resin compositesPOLYMER COMPOSITES, Issue 2 2010R.B. Mathur Despite the much touted mechanical properties of carbon nanotubes, composites reinforced with nanotubes have failed to achieve mechanical properties which rival those present in conventional fiber reinforced polymer composites. This article describes an attempt to bridge this gap. Multi-walled carbon nanotubes (MWCNT) were synthesized using a chemical vapor deposition method and were dispersed in phenolic resin by both the wet and dry dispersion techniques before molding into composite bars (50 × 5 × 3 mm3). Although no improvement in the mechanical properties of the MWCNT/phenolic composites was observed over the neat resin value when wet mixing dispersion was employed, an improvement of nearly 158% (160 MPa as compared with 62 MPa for neat resin) was achieved in 5 vol% MWCNT containing phenolic resin prepared by the dry mixing. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers [source] Cure kinetics, phase behaviors, and fracture properties of bismaleimide resin toughened by poly(phthalazinone ether ketone)POLYMER ENGINEERING & SCIENCE, Issue 12 2009Yongjin Han Poly(phthalazinone ether ketone)s (PPEK) were used to toughen bismaleimide (BMI) resin composed of 4,4,-bismaleimidodiphenyl methane (BMDM) and O,O, -diallyl bisphenyl A (DABPA). Dynamic differential scanning calorimetry (DSC) of the blends was carried out for kinetic analysis of the curing reaction. The reaction activation energy indicated that the reaction mechanism remained the same even after the incorporation of PPEK. The reaction-induced phase separation process in BMI/PPEK blends was investigated by optical microscopy (OM). The primary phase structure of the blends was fixed at the early stage of phase separation, and a secondary phase separation was observed as a result of the high viscosity of the blends. Scanning electron microscope (SEM) graphs showed that the morphology of the cured resin changed from a dispersed structure to a phase-inverted structure with the increase of PPEK content. Compared with the neat resin, the fracture toughness of the modified resin exhibits a moderate increase when PPEK was incorporated. Several toughening mechanisms, such as local plastic deformation, crack deflection, and branches, presumably took part in improving the toughness of BMI/PPEK blends on the basis of the morphology. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers [source] Spatial orientation of nanoclay and crystallite in microcellular injection molded polyamide-6 nanocompositesPOLYMER ENGINEERING & SCIENCE, Issue 6 2007Mingjun Yuan Three different types of characteristic structures-microcells, nanoclay, and crystallite lamella-exist in injection molded polyamide-6 microcellular nanocomposites. These structures are in completely different scales. The spatial orientation of these microscale structures crucially determines the material's bulk properties. Based on scanning electron microscopy, transmission electron microscopy, and two-dimensional X-ray diffractometry measurements, it was found that the nanoclay and the crystallite formed special geometric structures around the microcells and near the part skins. The nanoclay platelets lay almost parallel to the surfaces of the molded parts. Preferred orientation of the crystallites was induced by the presence of the nanoclay. A molecular-based model is proposed to describe the structural hierarchy and correlations among the microcells, nanoclay, and crystallite lamella. From the small-angle X-ray scattering experiments, it was found that microcellular injection molding produces relatively smaller crystallite lamella than that of conventional injection molding, and that for both solid and microcellular neat resin parts the crystallite lamella thickness at the part skin is smaller than that at the core. Polarized optical microscopy results also indicated that the size of crystallites in the microcellular neat resin and nanocomposite parts is smaller than that in the corresponding solid parts. POLYM. ENG. SCI., 47:765,779, 2007. © 2007 Society of Plastics Engineers [source] Composites from PMMA modified thermosets and chemically treated woodflourPOLYMER ENGINEERING & SCIENCE, Issue 5 2003Betiana A. Acha The mechanical behavior of composites made from woodflour and a modified thermoset unsaturated polyester resin has been examined. Polymethylmethacrylate (PMMA), a common low profile additive (LPA), was used as the matrix modifier. Woodflour, the reinforcing filler, was used ,as received' and was also modified with a commercial alkenyl succinic anhydride (ASA), in order to enhance the compatibility with the resin. The composites exhibited higher flexural and compressive modulus and compressive yield stress than the neat resin, while flexural strength and ultimate strain were reduced. The addition of PMMA to the unfilled thermoset led to a LPA morphology and decreased the flexural modulus, but produced an increment in flexural strain at break, impact energy and toughness of the UP resin. No enhancement in the mechanical behavior of the composites was found when treated woodflour instead of unmodified woodflour was used. [source] Effect of surface treatment on the impact behaviour of fly-ash filled polymer compositesPOLYMER INTERNATIONAL, Issue 12 2002Kishore Abstract The impact behaviour of epoxy specimens containing 10% by volume of fly-ash particles with their surface treated for improving or decreasing adhesion is studied. The resulting behavioural patterns are listed and compared to those of composites containing untreated fly-ash particles and unreinforced (ie neat) epoxy. It was noticed that samples involving adhesion-increasing (ie acetone and silane) treatments show greater absorption of energy and maximum load compared to untreated samples and those subjected to adhesion-reducing treatments. Ductility index, however, showed a reversed trend with adhesion-reducing treatment yielding the highest value. In contrast, the energy absorbed was highest for neat resin and lowest for oil surface bearing ash particulate composites. Scanning electron microscope examination of the failed samples was carried out to obtain information on the fracture features with the aim of correlating microstructure to impact response. Thus, the higher ductility indices cases are shown to be distinct and different from composites containing other surface treatments for fillers. © 2002 Society of Chemical Industry [source] Dentine sealing provided by smear layer/smear plugs vs. adhesive resins/resin tagsEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 4 2007Marcela R. Carrilho The aim of this study was to evaluate the ability of five experimental resins, which ranged from hydrophobic to hydrophilic blends, to seal acid-etched dentine saturated with water or ethanol. The experimental resins (R1, R2, R3, R4, and R5) were evaluated as neat bonding agents (100% resin) or as solutions solvated with absolute ethanol (70% resin/30% ethanol). Fluid conductance was measured at 20 cm H2O hydrostatic pressure after sound dentine surfaces were: (i) covered with a smear layer; (ii) acid-etched; or (iii) bonded with neat or solvated resins, which were applied to acid-etched dentine saturated with water or ethanol. In general, the fluid conductance of resin-bonded dentine was significantly higher than that of smear layer-covered dentine. However, when the most hydrophobic neat resins (R1 and R2) were applied to acid-etched dentine saturated with ethanol, the fluid conductance was as low as that produced by smear layers. The fluid conductance of resin-bonded dentine saturated with ethanol was significantly lower than for resin bonded to water-saturated dentine, except for resin R4. Application of more hydrophobic resins may provide better sealing of acid-etched dentine if the substrate is saturated with ethanol instead of with water. [source] Moisture absorption behavior of epoxies and their S2 glass compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Amit Chatterjee Abstract The influence of moisture exposure on the behavior of three toughened epoxy,amine systems (scrimp resins SC11, SC15, and SC79, Applied Poleramic, Inc., Benicia, CA) was investigated. Neat resin samples were conditioned by immersion in distilled water at 71°C and in an environmental chamber at 85% relative humidity and 87.8°C until saturation. The equilibrium weight gain ranged from 1.8 to 3.8% for the resins. The long-chain, low-crosslink-density epoxy system (SC11) absorbed the highest amount of water and was saturated first, and it was followed by the medium-crosslink-density (SC15) and high-crosslink-density materials (SC79). The moisture diffusivity decreased with the increasing crosslink density of the resins. The percentage reduction of the glass-transition temperature (Tg) at equilibrium moisture absorption was highest for the low-crosslink molecule. The percentage reductions for the medium-crosslink and higher crosslink systems were comparable. A net weight loss after drying was observed for the SC11 and SC79 resin systems. Fourier transform infrared analysis confirmed the segment breakage and leaching of molecules from the epoxy,amine network. The effects of moisture cycling on Tg were dependent on the epoxy,amine morphology. During the drying stage, Tg increased to a value higher than that of the unaged dry systems. The S2 glass composite samples were conditioned under identical conditions for the resin system. Composite systems absorbed less moisture than the neat resins as expected. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source] |