Home About us Contact | |||
Nearest Neighbour Distance (nearest + neighbour_distance)
Selected AbstractsSpatial patterns, temporal variability, and the role of multi-nest colonies in a monogynous Spanish desert antECOLOGICAL ENTOMOLOGY, Issue 1 2002Xim Cerdá Abstract 1.,The colonies of the Spanish desert ant Cataglyphis iberica are polydomous. This study describes the temporal and spatial patterns of the polydomy in this species at two different sites, and presents analyses of its role in reducing the attacks of the queen over sexual brood, and in allowing better habitat exploitation. 2. The spatial distribution of nests was clumped while colonies were distributed randomly. Mean nearest neighbour distance ranged from 3.4 to 7.0 m for nests and from 12.3 to 14.1 m for colonies. Distance of foragers searching for food varied among nests: mean values were between 6.1 and 12.6 m. 3. At both sites, the maximum number of nests per colony occurred in summer, during the maximum activity period of the species. Colonies regrouped at the end of this period but overwintered in several nests. 4. Nest renewal in C. iberica colonies was high and showed great temporal variability: nests changed (open, close, re-open) continuously through the activity season and/or among years. The lifetime of up to 55% of nests was only 1,3 months. 5. Polydomy in C. iberica might decrease the interactions between the queen and the sexual brood. In all colonies excavated just before the mating period, the nest containing the queen did not contain any virgin female. Females were in the queenless nests of the colony. 6. The results also suggest that polydomous C. iberica colonies may enhance habitat exploitation because foraging activity per colony increases with nest number. The relationship between total prey input and foraging efficiency and number of nests per colony attains a plateau or even decreases after a certain colony size (four to six nests). This value agrees with the observed mean number of nests per colony in C. iberica. [source] Tree spacing and area of competitive influence do not scale with tree size in an African rain forestJOURNAL OF VEGETATION SCIENCE, Issue 5 2008Michael J. Lawes Abstract Questions: Is the area of influence of individual trees determined by tree size? Does competition, inferred from spatial pattern between neighbouring trees, affect adult tree spacing patterns in an tropical forest? At what size-class or stage is competition between neighbours most likely to affect adult tree spacing patterns? Location: Kibale National Park, western Uganda. Methods: Relationships between focal tree size and nearest neighbour distance, size, density, and species in a 4-ha permanent plot, using point pattern analyses. Results: We found non-random patterns of distribution of nearest tree neighbours (stems > 10 cm DBH). Independent of identity, tree density was highest and neighbours were regularly spaced within 3,5m of an individual. Tree densities were lower and relatively constant at distances >5m and neighbours were typically randomly spaced. In general, conspecific patterns conformed to the latter trends. Thus, individual area of influence was small (within a radius of 3,5 m). Rarer species were more clumped than common species. Weak competitive thinning occurred among more densely packed small trees (<20 cm DBH), and rapidly disappeared with increasing tree size and distance from an individual. The clumping and density of individuals was not significantly affected by tree size. Conclusions: Negative effects of competition among trees are weak, occur within the crown radius of most individuals, and are independent of adult tree size and identity. The density of neighbouring trees (aggregation) did not decline with increasing focal tree size at either the conspecific or the community level and tree diameter (tree size) was not a good estimator of the implied competitive influence of a tree. Mechanisms operating at the recruitment stage may be important determinants of adult tree community diversity and spacing patterns. [source] Landscape structure influences tree density patterns in fragmented woodlands in semi-arid eastern AustraliaAUSTRAL ECOLOGY, Issue 6 2009VALERIE J. DEBUSE Abstract Landscape and local-scale influences are important drivers of plant community structure. However, their relative contribution and the degree to which they interact remain unclear. We quantified the extent to which landscape structure, within-patch habitat and their confounding effects determine post-clearing tree densities and composition in agricultural landscapes in eastern subtropical Australia. Landscape structure (incorporating habitat fragmentation and loss) and within-patch (site) features were quantified for 60 remnant patches of Eucalyptus populnea (Myrtaceae) woodland. Tree density and species for three ecological maturity classes (regeneration, early maturity, late maturity) and local site features were assessed in one 100 × 10 m plot per patch. All but one landscape characteristic was determined within a 1.3-km radius of plots; Euclidean nearest neighbour distance was measured inside a 5-km radius. Variation in tree density and composition for each maturity class was partitioned into independent landscape, independent site and joint effects of landscape and site features using redundancy analysis. Independent site effects explained more variation in regeneration density and composition than pure landscape effects; significant predictors were the proportion of early and late maturity trees at a site, rainfall and the associated interaction. Conversely, landscape structure explained greater variation in early and late maturity tree density and composition than site predictors. Area of remnant native vegetation within a landscape and patch characteristics (area, shape, edge contrast) were significant predictors of early maturity tree density. However, 31% of the explained variation in early mature tree differences represented confounding influences of landscape and local variables. We suggest that within-patch characteristics are important in influencing semi-arid woodland tree regeneration. However, independent and confounding effects of landscape structure resulting from previous vegetation clearing may have exerted a greater historical influence on older cohorts and should be accounted for when examining woodland dynamics across a broader range of environments. [source] Testing alternative models for the conservation of koalas in fragmented rural,urban landscapesAUSTRAL ECOLOGY, Issue 4 2006CLIVE A. MCALPINE Abstract Predicting the various responses of different species to changes in landscape structure is a formidable challenge to landscape ecology. Based on expert knowledge and landscape ecological theory, we develop five competing a priori models for predicting the presence/absence of the Koala (Phascolarctos cinereus) in Noosa Shire, south-east Queensland (Australia). A priori predictions were nested within three levels of ecological organization: in situ (site level) habitat (<1 ha), patch level (100 ha) and landscape level (100,1000 ha). To test the models, Koala surveys and habitat surveys (n = 245) were conducted across the habitat mosaic. After taking into account tree species preferences, the patch and landscape context, and the neighbourhood effect of adjacent present sites, we applied logistic regression and hierarchical partitioning analyses to rank the alternative models and the explanatory variables. The strongest support was for a multilevel model, with Koala presence best predicted by the proportion of the landscape occupied by high quality habitat, the neighbourhood effect, the mean nearest neighbour distance between forest patches, the density of forest patches and the density of sealed roads. When tested against independent data (n = 105) using a receiver operator characteristic curve, the multilevel model performed moderately well. The study is consistent with recent assertions that habitat loss is the major driver of population decline, however, landscape configuration and roads have an important effect that needs to be incorporated into Koala conservation strategies. [source] Effects of aging and gender on the spatial organization of nuclei in single human skeletal muscle cellsAGING CELL, Issue 5 2010Alexander Cristea Summary The skeletal muscle fibre is a syncitium where each myonucleus regulates the gene products in a finite volume of the cytoplasm, i.e., the myonuclear domain (MND). We analysed aging- and gender-related effects on myonuclei organization and the MND size in single muscle fibres from six young (21,31 years) and nine old men (72,96 years), and from six young (24,32 years) and nine old women (65,96 years), using a novel image analysis algorithm applied to confocal images. Muscle fibres were classified according to myosin heavy chain (MyHC) isoform expression. Our image analysis algorithm was effective in determining the spatial organization of myonuclei and the distribution of individual MNDs along the single fibre segments. Significant linear relations were observed between MND size and fibre size, irrespective age, gender and MyHC isoform expression. The spatial organization of individual myonuclei, calculated as the distribution of nearest neighbour distances in 3D, and MND size were affected in old age, but changes were dependent on MyHC isoform expression. In type I muscle fibres, average NN-values were lower and showed an increased variability in old age, reflecting an aggregation of myonuclei in old age. Average MND size did not change in old age, but there was an increased MND size variability. In type IIa fibres, average NN-values and MND sizes were lower in old age, reflecting the smaller size of these muscle fibres in old age. It is suggested that these changes have a significant impact on protein synthesis and degradation during the aging process. [source] High-field optically detected EPR and ENDOR of semiconductor defects using W-band microwave Fabry,Pérot resonators,MAGNETIC RESONANCE IN CHEMISTRY, Issue S1 2005J.-M. Spaeth Abstract The designs of W-band (,95 GHz) Fabry,Pérot microwave resonators for optically detected EPR and ENDOR using the magnetic circular dichroism of the optical absorption (MCDA) as well as for photo-luminescence-detected EPR are briefly described. We report on the first MCDA-detected high-field EPR/ENDOR investigation of the paramagnetic EL2+ defect in semi-insulating GaAs. The higher-order effects, which prevented the unambiguous analysis of previous MCDA-detected K-band EPR/ENDOR experiments could be suppressed in W-band. The analysis of the ENDOR spectra showed that an extremely precise alignment of the samples is necessary. The paramagnetic El2+ defect turned out to be an As antisite defect, which has four almost equivalent nearest 75As neighbours differing less than 1.5% in the superhyperfine interactions suggestive of an isolated As antisite, while the third 75As shell (fifth neighbour shell) is clearly of lower symmetry than expected for an isolated As antisite. We discuss as a possible solution to this paradoxical situation that EL2+ is an isolated antisite at room temperature, which at low temperature, where all magnetic resonance experiments are performed, associates itself with shallow acceptors such as ZnGa, more than two nearest neighbour distances away. According to recent theoretical calculations, such ,loose' complexes with binding energies between 0.01 eV and 0.05 eV and disturb the equivalence of the nearest neighbour superhyperfine (shf) interactions less than 1.5%. Also, W-band EPR was measured using the photo-luminescence for detection to investigate P dopants in 6H-SiC. Copyright © 2005 John Wiley & Sons, Ltd. [source] |