Natural Fire (natural + fire)

Distribution by Scientific Domains


Selected Abstracts


Effective thermal actions and thermal properties of timber members in natural fires

FIRE AND MATERIALS, Issue 1 2006
Jürgen KönigArticle first published online: 28 JUL 200
Abstract For the thermal analysis of structural or non-structural timber members, using conventional simplified heat transfer models, thermal conductivity values of timber are normally calibrated to test results such that they implicitly take into account influences such as mass transport that are not included in the model. Various researchers and designers have used such effective thermal conductivity values, originally determined for standard fire exposure, to evaluate other fire scenarios such as natural fires. This paper discusses in qualitative terms some parameters that govern the burning of wood and their influence on effective conductivity values. Reviewing fire tests of timber slabs under natural fire conditions, the study explains why effective conductivity values, giving correct results for the ISO 834 standard fire scenario, should not be used in other fire scenarios. For this reason, the thermal properties of timber given in EN 1995-1-2 are limited to standard fire exposure. As shown by heat transfer calculations, the effective thermal conductivity of the char layer is strongly dependent on the charring rate and therefore varies during a natural fire scenario. It has also been shown that char oxidation during the decay phase in a natural fire has a significant influence on the temperature development in the timber member, since char surface temperatures exceed the gas temperature in the compartment or furnace. Using increased effective gas temperature as thermal action during the decay phase, and varying conductivity values for the char layer, fairly good agreement could be obtained regarding the temperature development in the timber member and the char depth. Copyright © 2005 John Wiley & Sons, Ltd. [source]


A fine-resolution Pliocene pollen and charcoal record from Yallalie, south-western Australia

JOURNAL OF BIOGEOGRAPHY, Issue 2 2004
Pia Atahan
Abstract Aim, This paper aims to reconstruct a high-resolution fire and vegetation history from a period when humans were absent in Australia. This is then used to comment on the frequency of natural fire in high biodiversity heathland, and to compare this with historical fire regime in the same region. Methods, A section of varved sediment covering a period of c. 84 years was taken from Palaeolake Yallalie in south-western Australia. The sediments were separated into approximately single to small multiples of years and then analysed for charcoal, pollen and sediment analysis to reconstruct the environmental conditions at the time. Results, The charcoal record indicates fire recurrence to have been roughly between 5 and 13 years, a little longer than those of the historical period. The pollen record was dominated by Casuarinaceae, Myrtaceae and a large number of Proteaceae species; these are intermixed with Araucariaceae, Nothofagus and Podocarpus. This suggests there was a mix of sclerophyll woodland and a mosaic of rain forest elements, thus conditions must have been wetter, particularly in the summers, compared with today. Conclusions, We assume that fire was most likely confined to the sclerophyll vegetation, and that fire has been a significant feature of the environment long before humans entered Australia. The slightly longer fire recurrence times compared with the present result from the intermittent nature of lightning and wetter summers at the time. [source]


Fire-mediated interactions between shrubs in a South American temperate savannah

OIKOS, Issue 9 2009
Fernando Biganzoli
We examined spatial patterns of fire-caused mortality and after-fire establishment of two dominant shrub species, Baccharis dracunculifolia and Eupatorium buniifolium in a humid temperate South American savannah. Our objective was to determine whether fires mediate in interactions between these two species. After a natural fire burned a large tract of savannah, we established two plots (respectively 550 and 500 m2) within which we mapped all surviving and dead shrubs as well as all individuals of shrub species that recruited in the following year. We used techniques of point-pattern analysis to test specific null hypotheses about spatial associations in the distribution, mortality, and establishment of shrubs. Results support the notions that fire mediates interactions between these two species. Fire-caused death of E. buniifolium tended to occur selectively in the vicinities of Baccharis individuals, and recruitment of B. dracunculifolia tended to be concentrated in the places of dead shrubs. These responses, however, were contingent on local abundances of shrubs which depend in part from the recent fire history. Anthropogenic perturbation of the natural fire regime would have therefore distorted the role of fire mediated interactions as drivers of the dynamics of the vegetation of this temperate savannah. [source]


Effective thermal actions and thermal properties of timber members in natural fires

FIRE AND MATERIALS, Issue 1 2006
Jürgen KönigArticle first published online: 28 JUL 200
Abstract For the thermal analysis of structural or non-structural timber members, using conventional simplified heat transfer models, thermal conductivity values of timber are normally calibrated to test results such that they implicitly take into account influences such as mass transport that are not included in the model. Various researchers and designers have used such effective thermal conductivity values, originally determined for standard fire exposure, to evaluate other fire scenarios such as natural fires. This paper discusses in qualitative terms some parameters that govern the burning of wood and their influence on effective conductivity values. Reviewing fire tests of timber slabs under natural fire conditions, the study explains why effective conductivity values, giving correct results for the ISO 834 standard fire scenario, should not be used in other fire scenarios. For this reason, the thermal properties of timber given in EN 1995-1-2 are limited to standard fire exposure. As shown by heat transfer calculations, the effective thermal conductivity of the char layer is strongly dependent on the charring rate and therefore varies during a natural fire scenario. It has also been shown that char oxidation during the decay phase in a natural fire has a significant influence on the temperature development in the timber member, since char surface temperatures exceed the gas temperature in the compartment or furnace. Using increased effective gas temperature as thermal action during the decay phase, and varying conductivity values for the char layer, fairly good agreement could be obtained regarding the temperature development in the timber member and the char depth. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Soil Charcoal in Old-Growth Rain Forests from Sea Level to the Continental Divide

BIOTROPICA, Issue 6 2007
Beyhan Titiz
ABSTRACT Soil charcoal is an indicator of Holocene fires as well as a palaeoecological signature of pre-Colombian land use in Neotropical rain forests. To document rain forest fire history, we examined soil charcoal patterns in continuous old-growth forests along an elevational transect from sea level to the continental divide on the Atlantic slope of Costa Rica. At 10 elevations we sampled 1-ha plots, using 16 cores/ha to collect 1.5-m deep soil samples. We found charcoal in soils at every elevation, with total dry mass ranging from 3.18 g/m2 at 2000-m elevation to as much as 102.7 g/m2 at 300 m. Soil charcoal is most abundant at the wettest lowland sites (60,500 m) and less at montane elevations (> 1000 m) where there is less rainfall. Between 30- and 90-cm soil depth, soil charcoal is present consistently and every 1-ha plot has charcoal evidence for multiple fire events. Radiocarbon dates range from 23,240 YBP at 1750-m elevation to 140 YBP at 2600 m. Interestingly, none of the charcoal samples from 2600 m are older than 170 yr, which suggests that forests near the continental divide are relatively young replacement stands that have re-established since the most recent localized volcanic eruption on Volcán Barva. We propose that these old-growth forests have been disturbed infrequently but multiple times as a consequence of anthropogenic and natural fires. RESUMEN El carbón es un indicador de los fuegos Holocenos así como una huella paleoecológica del uso de las tierras precolombinas en bosques neotropicales. Para documentar la historia de fuegos en los bosques, examinamos modelos de carbón en la tierra en bosques primarios continuos a lo largo de un transecto en altitud en zonas de vida forestal desde el nivel del mar hasta la División Continental en la vertiente atlántica de Costa Rica. En diez elevaciones tomamos muestras de parcelas de una hectárea, donde se usaron dieciséis cilíndricas de acero por hectárea para recoger muestras de suelo a 1.5 metros de profundidad. Descubrimos carbón en suelos en cada elevación, con un rango de masa seca total desde los 3.18 g/m2 a 2000 metros de altura hasta un máximo de 102.7 g/m2 a 300 metros de altura. El carbón abunda más en las zonas más lluviosas (60,500 metros) y menos en elevaciones montañosas (>1000 metros) donde hay menos precipitación. Entre los 30 a los 90 centímetros de profundidad en la tierra, el carbón está presente consistentemente y cada parcela de una hectárea tiene evidencia de carbón de incendios múltiples. Fechas de 14C van desde los 23,240 años a.P. a 1750 metros de elevación hasta los 140 años a.P. a 2600 metros. De modo interesante, ninguna de las muestras de carbón a partir de los 2600 metros de altura tiene más de 170 años, lo que sugiere que los bosques cerca de la División Continental son árboles relativamente jóvenes que se han reestablecido después de las erupciones volcánicas confinadas del Volcán Barva. Pensamos que estos bosques primarios han sido disturbados en muchas ocasiones pero en un largo periodo de tiempo como consecuencia de fuegos antropogénicos y naturales. [source]


The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa

JOURNAL OF APPLIED ECOLOGY, Issue 4 2006
NAVASHNI GOVENDER
Summary 1Fire is important for the maintenance and conservation of African savanna ecosystems. Despite the importance of fire intensity as a key element of the fire regime, it is seldom measured or included in fire records. 2We estimated fire intensity in the Kruger National Park, South Africa, by documenting fuel loads, fuel moisture contents, rates of fire spread and the heat yields of fuel in 956 experimental plot burns over 21 years. 3Individual fires were conducted in five different months (February, April, August, October and December) and at five different return intervals (1, 2, 3, 4 and 6 years). Estimated fire intensities ranged from 28 to 17 905 kW m,1. Fire season had a significant effect on fire intensity. Mean fire intensities were lowest in summer fires (1225 kW m,1), increased in autumn fires (1724 kW m,1) and highest in winter fires (2314 kW m,1); they were associated with a threefold difference between the mean moisture content of grass fuels in winter (28%) and summer (88%). 4Mean fuel loads increased with post-fire age, from 2964 kg ha,1 on annually burnt plots to 3972 kg ha,1 on biennial, triennial and quadrennial burnt plots (which did not differ significantly), but decreased to 2881 kg ha,1 on sexennial burnt plots. Fuel loads also increased with increasing rainfall over the previous 2 years. 5Mean fire intensities showed no significant differences between annual burns and burns in the biennial, triennial and quadrennial categories, despite lower fuel loads in annual burns, suggesting that seasonal fuel moisture effects overrode those of fuel load. Mean fire intensity in sexennial burns was less than half that of other burns (638 vs. 1969 kW m,1). 6We used relationships between season of fire, fuel loads and fire intensity in conjunction with the park's fire records to reconstruct broad fire intensity regimes. Changes in management from regular prescribed burning to ,natural' fires over the past four decades have resulted in a decrease in moderate-intensity fires and an increase in high-intensity fires. 7The highest fire intensities measured in our study (11 000 , > 17 500 kW m,1) were significantly higher than those previously reported for African savannas, but were similar to those in South American cerrado vegetation. The mean fire intensity for late dry season (winter) fires in our study was less than half that reported for late dry season fires in savannas in northern Australia. 8Synthesis and applications. Fire intensity has important effects on savanna vegetation, especially on the dynamics of the tree layer. Fire intensity varies with season (because of differences in fuel moisture) as well as with fuel load. Managers of African savannas can manipulate fire intensity by choosing the season of fire, and further by burning in years with higher or lower fuel loads. The basic relationships described here can also be used to enhance fire records, with a view to building a long-term data set for the ongoing assessment of the effectiveness of fire management. [source]