Home About us Contact | |||
Natural Fibers (natural + fiber)
Selected AbstractsInduction of chemical and moisture resistance in Saccharum spontaneum L fiber through graft copolymerization with methyl methacrylate and study of morphological changesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2009Balbir Singh Kaith Abstract In this article, morphological modification of Saccharum spontaneum L, a natural fiber through graft copolymerization with methylmethacrylate using ferrous ammonium sulfate,potassium per sulfate redox initiator has been reported. Different reaction parameters such as reaction temperature, time, initiator molar ratio, monomer concentration, pH and solvent were optimized to get maximum graft yield (144%). The graft copolymers thus formed were characterized by Fourier transform infrared, scanning electron microscopy, X-ray diffraction and thermogravimetric, differential thermal analysis, and differential thermogravimetric techniques. Graft copolymer has been found to be more moisture resistant and also showed higher chemical and thermal resistance. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboardPOLYMER COMPOSITES, Issue 6 2008Majid Chaharmahali The possibility of producing wood-plastic panels using a melt blend/hot press method was studied in this research. The studied panels were compared with conventional medium density fiberboard (MDF) and particleboard (PB) panels. Wood-plastic panels were made from high density polyethylene (as resin) and MDF waste and PB waste (as natural fiber) at 60, 70, and 80% by weight fiber loadings. Nominal density and dimensions of the panels were 1 g/cm3 and 35 × 35 × 1 cm3, respectively. Mechanical properties of the panels including flexural modulus, flexural strength, screw and nail withdrawal resistances, and impact strength were studied. Results indicated that the mechanical properties of the composites were strongly affected by the proportion of the wood flour and polymer. Maximum values of flexural modulus of wood plastic panels were reached at 70% fiber content. Flexural strength, screw and nail withdrawal resistance, and impact strength of wood plastic composites declined with the increase in fiber content from 60 to 80%. This was attributed to the lack of compatibility between the phases. The produced panels outperformed conventional PB panels regarding their mechanical properties, which were acceptable when compared with MDF panels as well. The best feature in the produced panels was their screw withdrawal resistance, which is extremely important for screw joints in cabinet making. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers [source] Mechanical properties of polypropylene matrix composites reinforced with natural fibers: A statistical approachPOLYMER COMPOSITES, Issue 1 2004J. Biagiotti This work presents a systematic and statistical approach to evaluate and predict the properties of random discontinuous natural fiber reinforced composites. Different composites based on polypropylene and reinforced with natural fibers were produced and their mechanical properties are measured together with the distribution of the fiber size and the fiber diameter. The values obtained were related to the theoretical predictions, using a combination of the Griffith theory for the effective properties of the natural fibers and the Halpin-Tsai equation for the elastic modulus of the composites. The relationships between experimental results and theoretical predictions were statistically analyzed using a probability density function estimation approach based on neural networks. The results show a more accurate expected value with respect to the traditional statistical function estimation approach. In order to point out the particular features of natural fibers, the same proposed method is also applied to PP,glass fiber composites. [source] A review on interface modification and characterization of natural fiber reinforced plastic compositesPOLYMER ENGINEERING & SCIENCE, Issue 9 2001Jayamol George An Important aspect with respect to optimal mechanical performance of fiber reinforced composites in general and durability in particular is the optimization of the interfacial bond between fiber and polymer matrix. The quality of the fiber-matrix interface is significant for the application of natural fibers as reinforcement for plastics. Since the fibers and matrices are chemically different, strong adhesion at their interfaces is needed for an effective transfer of stress and bond distribution throughout an Interface. A good compatibilization between cellulose fibers and non-polar matrices is achieved from polymeric chains that will favor entanglements and interdiffiusion with the matrix. This article gives a critical review on the physical and chemical treatment methods that improve the fiber-matrix adhesion and their characterization methods. [source] Creating Hierarchical Structures in Renewable Composites by Attaching Bacterial Cellulose onto Sisal Fibers,ADVANCED MATERIALS, Issue 16 2008Julasak Juntaro The growth of bacterial-cellulose nanofibrils on the surfaces of micrometer-scale natural fibers provides a route to a new class of hierarchical, renewable, degradable composites. The nanofibrils improve the interaction between the primary fibers and the matrix, leading to improved mechanical properties and water resistance. [source] Biological Natural Retting for Determining the Hierarchical Structuration of Banana FibersMACROMOLECULAR BIOSCIENCE, Issue 10 2004Piedad Gañán Abstract Summary: Extraction processes of natural fibers can be performed by different procedures that include mechanical, chemical and biological methods. Each method presents different advantages or drawbacks according to the amount of fiber produced or the quality and properties of fiber bundles obtained. In this study, biological natural retting was satisfactorily used for obtaining banana fibers from plant bunches. However, the most important contribution of this work refers to the description of the hierarchical microstructural ordering present in banana fiber bundles in both bundle surface and inner region. The chemical composition of banana fiber bundles has been evaluated by FTIR spectroscopy. Through exposure time, the fiber bundle configuration presents small variations in composition. The main changes are related to hemicellulose and pectins as they conform the outer walls of the bundle. Hierarchical helicoidal ordering in the bundle surface as well as orientation on the longitudinal axis of the bundle were observed by optical microscopy (OM) and scanning electron microscopy (SEM) for 3,4 ,m surface fibers and 10,15 ,m inner elementary fibers, respectively. With increasing exposure time, fiber bundle walls lose integrity, as reflected in their mechanical behavior. [source] Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and CompositesMACROMOLECULAR MATERIALS & ENGINEERING, Issue 4 2006Jane Maria Faulstich de Paiva Abstract Summary: The study and development of polymeric composite materials, especially using lignocellulosic fibers, have received increasing attention. This is interesting from the environmental and economical viewpoints as lignocellulosic fibers are obtained from renewable resources. This work aims to contribute to reduce the dependency on materials from nonrenewable sources, by utilizing natural fibers (sisal) as reinforcing agents and lignin (a polyphenolic macromolecule obtained from lignocellulosic materials) to partially substitute phenol in a phenol-formaldehyde resin. Besides, it was intended to evaluate how modifications applied on sisal fibers influence their properties and those of the composites reinforced with them, mainly thermal properties. Sisal fibers were modified by either (i) mercerization (NaOH 10%), (ii) esterification (succinic anhydride), or (iii) ionized air treatment (discharge current of 5 mA). Composites were made by mould compression, of various sisal fibers in combination with either phenol-formaldehyde or lignin-phenol-formaldehyde resins. Sisal fibers and composites were characterized by thermogravimetry (TG) and DSC to establish their thermal stability. Scanning electron microscopy (SEM) was used to investigate the morphology of unmodified and modified surface sisal fibers as well as the fractured composites surface. Dynamic mechanical thermoanalysis (DMTA) was used to examine the influence of temperature on the composite mechanical properties. The results obtained for sisal fiber-reinforced phenolic and lignophenolic composites showed that the use of lignin as a partial substitute of phenol in phenolic resins in applications different from the traditional ones, as for instance in other than adhesives is feasible. Micrograph of the impact fracture surface of phenolic composite reinforced with mercerized sisal fiber (500 X). [source] Dependence of interfacial strength on the anisotropic fiber properties of jute reinforced compositesPOLYMER COMPOSITES, Issue 9 2010J.L. Thomason The upsurge in research on natural fiber composites over the past decade has not yet delivered any major progress in large scale replacement of glass fiber in volume engineering applications. This article presents data on injection-molded jute reinforced polypropylene and gives a balanced comparison with equivalent glass reinforced materials. The poor performance of natural fibers as reinforcements is discussed and both chemical modification of the matrix and mercerization and silane treatment of the fibers are shown to have little significant effect on their level of reinforcement of polypropylene in comparison to glass fibers. A hypothesis is proposed to explain the poor performance of natural fibers relating their low level of interfacial strength to the anisotropic internal fiber structure. POLYM. COMPOS., 31:1525,1534, 2010. © 2009 Society of Plastics Engineers [source] Mechanical properties of natural fibers/polyamides compositesPOLYMER COMPOSITES, Issue 3 2009Patricia Alvarez de Arcaya The aim of this investigation has been to use high performance thermoplastic matrices such as polyamides instead of the commonly used polyolefins to develop natural fiber composites for substituting glass fibers without renouncing to their mechanical properties. For this purpose, different natural fibers such as flax, jute, pure cellulose, and wood pulps have been melt compounded with different polyamides to analyze the effect of fiber content on mechanical properties. Fibers have not been treated as polyamides are less hydrophobic than polyolefins. Thermal behavior of the different fibers was determined by thermogravimetry to know the boundary for processing at high temperatures, since the melting points of the polyamides are much higher than those of polyolefins and this could lead to a higher degradation of the natural fibers. Rheological parameters were deduced by measuring torque values during the mixing process. Flexural and tensile modulus and strength of composites were analyzed, finding an increase in the mechanical properties compared with the unreinforced matrix that turns natural fibers into a considerable reinforcement offering a wealth of possibilities for industrial applications. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source] A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix compositesPOLYMER COMPOSITES, Issue 5 2004Jerico Biagiotti This paper reports a systematic study of the effects on composite properties of different chemical treatments on natural fibers. Both short flax fibers and flax cellulose pulp in a polypropylene matrix have been investigated. The influence of treatments on fiber properties was investigated by means of spectroscopic, thermal and mechanical tests. Moreover, the effects of fiber treatment on the crystallinity of the matrix were analyzed using differential scanning calorimetry and optical microscopy. The mechanical properties of the composites obtained were studied using tensile and bending tests. It is shown that most of the main properties of the composites can be improved by adequately treating the fibers. The results of this study provide a database mainly devoted to material selection for the automotive industry. This research has been performed as a part of the ECOFINA project in the framework of the 5th European Research Program of the European Community. Polym. Compos. 25:470,479, 2004. © 2004 Society of Plastics Engineers. [source] Mechanical properties of polypropylene matrix composites reinforced with natural fibers: A statistical approachPOLYMER COMPOSITES, Issue 1 2004J. Biagiotti This work presents a systematic and statistical approach to evaluate and predict the properties of random discontinuous natural fiber reinforced composites. Different composites based on polypropylene and reinforced with natural fibers were produced and their mechanical properties are measured together with the distribution of the fiber size and the fiber diameter. The values obtained were related to the theoretical predictions, using a combination of the Griffith theory for the effective properties of the natural fibers and the Halpin-Tsai equation for the elastic modulus of the composites. The relationships between experimental results and theoretical predictions were statistically analyzed using a probability density function estimation approach based on neural networks. The results show a more accurate expected value with respect to the traditional statistical function estimation approach. In order to point out the particular features of natural fibers, the same proposed method is also applied to PP,glass fiber composites. [source] Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behaviorPOLYMER COMPOSITES, Issue 5 2002Alexander Bismarck The surface characteristics of several natural fibers,flax, hemp and cellulose,were investigated using scanning electron microscopy, BET-surface area and zeta (,-) potential measurements. ,-Potential measurements using the streaming potential method were performed in order to study the water uptake behavior as well as the surface properties of several natural fibers. The influence of different flax-fiber separation methods and several modifications, like industrial purification, and such a treatment followed by alkaline purification as well as polypropylene grafting on the fiber surface morphology, surface area and time- and pH-depending ,-potentials were studied. The time-dependence of the ,-potential, measured in 1 mM KCl solution, offeres and alternative possibility to estimate the water uptake behavior for nearly all investigated natural fibers. The water uptake data derived from the ,-potential measurements (, = f(t)) were compared with data from conventional water adsorption studies for some chosen examples. [source] A review on interface modification and characterization of natural fiber reinforced plastic compositesPOLYMER ENGINEERING & SCIENCE, Issue 9 2001Jayamol George An Important aspect with respect to optimal mechanical performance of fiber reinforced composites in general and durability in particular is the optimization of the interfacial bond between fiber and polymer matrix. The quality of the fiber-matrix interface is significant for the application of natural fibers as reinforcement for plastics. Since the fibers and matrices are chemically different, strong adhesion at their interfaces is needed for an effective transfer of stress and bond distribution throughout an Interface. A good compatibilization between cellulose fibers and non-polar matrices is achieved from polymeric chains that will favor entanglements and interdiffiusion with the matrix. This article gives a critical review on the physical and chemical treatment methods that improve the fiber-matrix adhesion and their characterization methods. [source] Flammability and fire resistance of composites reinforced by natural fibersPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 6 2008Ryszard Koz, owski Abstract Natural fiber-reinforced composites are more and more frequently applied to building industry and transportation. Therefore, the knowledge of their behavior during fire is of high importance. Flammability is one of very important parameters that often limits the application of composites to a given area. It is well-known that addition of lignocellulosic fibers to polymer changes mechanical properties of the product obtained. However, little information is available on their fire performance. The purpose of this review was to obtain fire performance data for several types of composites reinforced by lignocellulosic fibers. Copyright © 2008 John Wiley & Sons, Ltd. [source] |