Natural Extracellular Matrix (natural + extracellular_matrix)

Distribution by Scientific Domains


Selected Abstracts


Capturing Complex Protein Gradients on Biomimetic Hydrogels for Cell-Based Assays

ADVANCED FUNCTIONAL MATERIALS, Issue 21 2009
Steffen Cosson
Abstract A versatile strategy to rapidly immobilize complex gradients of virtually any desired protein on soft poly(ethylene glycol) (PEG) hydrogel surfaces that are reminiscent of natural extracellular matrices (ECM) is reported. A microfluidic chip is used to generate steady-state gradients of biotinylated or Fc-tagged fusion proteins that are captured and bound to the surface in less than 5,min by NeutrAvidin or ProteinA, displayed on the surface. The selectivity and orthogonality of the binding schemes enables the formation of parallel and orthogonal overlapping gradients of multiple proteins, which is not possible on conventional cell culture substrates. After patterning, the hydrogels are released from the microfluidic chip and used for cell culture. This novel platform is validated by conducting single-cell migration experiments using time-lapse microscopy. The orientation of cell migration, as well as the migration rate of primary human fibroblasts, depends on the concentration of an immobilized fibronectin fragment. This technique can be readily applied to other proteins to address a wealth of biological questions with different cell types. [source]


Biodegradable polymers applied in tissue engineering research: a review

POLYMER INTERNATIONAL, Issue 2 2007
Monique Martina
Abstract Typical applications and research areas of polymeric biomaterials include tissue replacement, tissue augmentation, tissue support, and drug delivery. In many cases the body needs only the temporary presence of a device/biomaterial, in which instance biodegradable and certain partially biodegradable polymeric materials are better alternatives than biostable ones. Recent treatment concepts based on scaffold-based tissue engineering principles differ from standard tissue replacement and drug therapies as the engineered tissue aims not only to repair but also regenerate the target tissue. Cells have been cultured outside the body for many years; however, it has only recently become possible for scientists and engineers to grow complex three-dimensional tissue grafts to meet clinical needs. New generations of scaffolds based on synthetic and natural polymers are being developed and evaluated at a rapid pace, aimed at mimicking the structural characteristics of natural extracellular matrix. This review focuses on scaffolds made of more recently developed synthetic polymers for tissue engineering applications. Currently, the design and fabrication of biodegradable synthetic scaffolds is driven by four material categories: (i) common clinically established polymers, including polyglycolide, polylactides, polycaprolactone; (ii) novel di- and tri-block polymers; (iii) newly synthesized or studied polymeric biomaterials, such as polyorthoester, polyanhydrides, polyhydroxyalkanoate, polypyrroles, poly(ether ester amide)s, elastic shape-memory polymers; and (iv) biomimetic materials, supramolecular polymers formed by self-assembly, and matrices presenting distinctive or a variety of biochemical cues. This paper aims to review the latest developments from a scaffold material perspective, mainly pertaining to categories (ii) and (iii) listed above. Copyright © 2006 Society of Chemical Industry [source]


Potential of Fortified Fibrin/Hyaluronic Acid Composite Gel as a Cell Delivery Vehicle for Chondrocytes

ARTIFICIAL ORGANS, Issue 6 2009
Sang-Hyug Park
Abstract Numerous treatment methods have been applied for use in cartilage repair, including abrasion, drilling, and microfracture. Although chondrocyte transplantation is the preferred treatment, it has some shortcomings, such as difficulty of application (large and posterior condylar regions), poor chondrocyte distribution, and potential cell leakage from the defect region. The cell delivery system of the tissue engineering technique can be used to overcome these shortcomings. We chose fibrin/hyaluronan (HA) composite gel as an effective cell delivery system to resolve these issues. Both components are derived from natural extracellular matrix. In the first trial, fortified fibrin/HA composite gels with rabbit chondrocytes were tested by implantation in nude mice. At 4 weeks, glycosaminoglycan contents in the fibrin/HA composite (0.186 ± 0.006 mg/mg) were significantly higher than those in the presence of fibrin alone (0.153 ± 0.017 mg/mg). As a next step, we applied the fibrin/HA composite gel to animal cartilage defects using full thickness cartilage defect rabbit models. The fibrin/HA composite gel with rabbit chondrocytes (allogenic) was implanted into the experimental group, and the control group was implanted with the fibrin/HA composite gel alone. Implanted chondrocytes with the fibrin/HA composite showed improved cartilage formation. In conclusion, the key to successful regeneration of cartilage is to provide the repair site with a sufficient supply of chondrogenic cells with a suitable delivery vehicle to ensure maximal differentiation and deposition of the proper extracellular matrix. This study suggests the feasibility of tissue-engineered cartilage formation using fibrin/HA composite gel. [source]


Exploring cellular adhesion and differentiation in a micro-/nano-hybrid polymer scaffold

BIOTECHNOLOGY PROGRESS, Issue 3 2010
Ke Cheng
Abstract Polymer scaffolds play an important role in three dimensional (3-D) cell culture and tissue engineering. To best mimic the archiecture of natural extracellular matrix (ECM), a nano-fibrous and micro-porous combined (NFMP) scaffold was fabricated by combining phase separation and particulate leaching techniques. The NFMP scaffold possesses architectural features at two levels, including the micro-scale pores and nano-scale fibers. To evaluate the advantages of micro/nano combination, control scaffolds with only micro-pores or nano-fibers were fabricated. Cell grown in NFMP and control scaffolds were characterized with respect to morphology, proliferation rate, diffentiation and adhesion. The NFMP scaffold combined the advantages of micro- and nano-scale structures. The NFMP scaffold nano-fibers promoted neural differentiation and induced "3-D matrix adhesion", while the NFMP scaffold micro-pores facilitated cell infiltration. This study represents a systematic comparison of cellular activities on micro-only, nano-only and micro/nano combined scaffolds, and demonstrates the unique advantages of the later. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]