Home About us Contact | |||
Native Perennial Grasses (native + perennial_grass)
Selected AbstractsMechanisms of resistance to invasion in a California grassland: the roles of competitor identity, resource availability, and environmental gradientsOIKOS, Issue 1 2007Meredith A. Thomsen Resistance to the invasion of exotic plants may sometimes result from the strong effects of a relatively small number of resident species. Understanding the mechanisms by which such species resist invasion could provide important insights for the management of invaded ecosystems. Furthermore, the individualistic responses of community members to resource availability and environmental gradients could drive spatial variation in resistance at the local to landscape scales. We tested the resistance of monoculture plots of three native perennial grasses from the California coastal prairie to the invasion of the European perennial grass Holcus lanatus. We also used a watering treatment that increased early summer water availability and a natural elevational gradient in resource availability and soil texture to evaluate how resident identity interacted with abiotic resistance to affect Holcus establishment. Two native species, Festuca rubra and Calamagrostis nutkaensis, exhibited strong resistance, correlated with their negative effects on light availability. A third native grass, Bromus carinatus var. maritimus, had either no effect or a weakly facultative effect on Holcus performance relative to bare plots. Water addition did not alter the resistance of these species, but the elevation gradient did. Holcus invasion increased with improving abiotic conditions towards the slope bottom in bare and Bromus plots, but invasion decreased towards the bottom in Calamagrostis plots, where better conditions favored competitive residents. These results support the idea that resistance to invasion can sometimes be due to a subset of native species, and that the resistance provided by even a single species is likely to vary across the landscape. Identifying the mechanisms by which species resist invasion could facilitate the selection of management strategies that at best increase, or at worst do not decrease, natural resistance. [source] Short-Term and Long-Term Effects of Soil Ripping, Seeding, and Fertilization on the Restoration of a Tropical RangelandRESTORATION ECOLOGY, Issue 2010David Kinyua Rangeland degradation is a serious problem in semiarid Africa. Extensive areas of bare, compacted, nutrient-poor soils limit the productivity and biodiversity of many areas. We conducted a set of restoration experiments in which all eight combinations of soil tilling, fertilization, and seeding with native perennial grasses were carried out in replicated plots. After 6 months, little aboveground biomass was produced in plots without tilling, regardless of seeding or fertilization. Tilling alone tripled plant biomass, mostly of herbaceous forbs and annual grasses. Perennial grasses were essentially limited to plots that were both tilled and seeded. The addition of fertilizer had no significant additional effects. After 7 years, vegetation had declined, but there were still large differences among treatments. After 10 years, one tilled (and seeded) plot had reverted to bare ground, but the other tilled plots still had substantial vegetation. Only one seeded grass (Cenchrus ciliaris) was still a contributor to total cover after 10 years. We suggest that restoration efforts on these soils be directed first to breaking up the surface crust, and second to the addition of desirable seed. A simple ripping trial inspired by this experiment showed considerable promise as a low-cost restoration technique. [source] Activated Carbon as a Restoration Tool: Potential for Control of Invasive Plants in Abandoned Agricultural FieldsRESTORATION ECOLOGY, Issue 2 2006Andrew Kulmatiski Abstract Exotic plants have been found to use allelochemicals, positive plant,soil feedbacks, and high concentrations of soil nutrients to exercise a competitive advantage over native plants. Under laboratory conditions, activated carbon (AC) has shown the potential to reduce these advantages by sequestering organic compounds. It is not known, however, if AC can effectively sequester organics or reduce exotic plant growth under field conditions. On soils dominated by exotic plants, we found that AC additions (1% AC by mass in the top 10 cm of soil) reduced concentrations of extractable organic C and N and induced consistent changes in plant community composition. The cover of two dominant exotics, Bromus tectorum and Centaurea diffusa, decreased on AC plots compared to that on control plots (14,8% and 4,0.1%, respectively), and the cover of native perennial grasses increased on AC plots compared to that on control plots (1.4,3% cover). Despite promising responses to AC by these species, some exotic species responded positively to AC and some native species responded negatively to AC. Consequently, AC addition did not result in native plant communities similar to uninvaded sites, but AC did demonstrate potential as a soil-based exotic plant control tool, especially for B. tectorum and C. diffusa. [source] Savannah woodland vegetation in the South-East District of South Australia: the influence of evaporative aerodynamics on the foliage structure of the understorey invaded by introduced annualsAUSTRAL ECOLOGY, Issue 6 2000R. L. SPECHT Abstract Evaporative aerodynamics determine the foliage projective cover of the understorey of perennial tussock grasses and associated perennial herbs in the savannah woodland dominated by Eucalyptus camalduknsis on gleyed podsolic soils in the Mediterranean climate of the South-East District of South Australia. By the mid 1940s, winter-spring evapotranspiration from the ,thin' leaves (with low leaf specific weight) of introduced annual plants was depleting surface soil water and thus reducing the annual growth of the summer-growing savannah understorey; perennial herbs between the tussock grasses were the first to succumb to this competition. During spring, the percentage of the ground covered by the savannah understorey was increased by 10% in the subhumid zone to 30% in the humid zone as the pre-European perennial herbs between the tussock grasses were replaced by introduced annuals. Application of phosphatic fertilizer to the understorey increased the growth of introduced annuals, which formed a dense stratum during their winter-spring growing season, increasing evapotranspiration and leading eventually to the extinction of the native perennial grasses. When the savannah understorey, invaded by introduced annuals in the mid-1940s, was converted to improved pasture, the percentage of ground covered by the seasonal foliage was increased by 20,30%; 100% coverage of overlapping foliage resulted in the humid zone. [source] |