Home About us Contact | |||
Native Fish Communities (native + fish_community)
Selected AbstractsEffects of stocked trout on native fish communities in boreal foothills lakesECOLOGY OF FRESHWATER FISH, Issue 2 2010Leslie E. Nasmith Nasmith LE, Tonn WM, Paszkowski CA, Scrimgeour GJ. Effects of stocked trout on native fish communities in boreal foothills lakes. Ecology of Freshwater Fish 2010: 19: 279,289. © 2010 John Wiley & Sons A/S Abstract,,, Ecological effects of stocking nonnative trout into lakes are receiving increased attention, especially in alpine environments. We assessed effects of stocked trout on native forage fishes in the boreal foothills of Alberta (Canada) by comparing fish density, population size structure and spatial and temporal activities in stocked and unstocked lakes over 3 years (2005,2007). The numerically dominant dace (primarily Phoxinus spp.) were larger in stocked lakes, consistent with size-limited predation. Dace were also more crepuscular and concentrated on the lake-bottom in stocked lakes, compared to more daytime activity in the water column in unstocked lakes. There were, however, no demonstrable effects of trout on the abundance of forage fish. The lack of major population-level impacts of stocked trout suggests that current stocking practices, characteristics of boreal foothill lakes (e.g. thermal structure, abundant invertebrates, dense macrophytes) and/or behavioural adjustments of forage fish contribute to healthy native fish populations in our stocked lakes. [source] Contribution of native and non-native species to fish communities in French reservoirsFISHERIES MANAGEMENT & ECOLOGY, Issue 3-4 2004P. Irz Abstract Previous studies showed that only 20% of the variability in fish community structure in French reservoirs could be explained by site characteristics. In addition, no relationship was found between the relative abundance of species and stocking effort. Therefore, deliberate or uncontrolled introductions are likely to be the source of a great part of the observed communities. The objective of this study was to assess the importance of species introductions in French reservoirs. Fifty-one reservoirs were sampled to obtain species presence/absence data. Local native (LNaR) and non-native (LNNR) species richness were negatively correlated. LNaR was strongly correlated to the lake surface area, depth and catchment area, whereas LNNR was independent of environmental variables. Furthermore, LNaR was positively correlated to regional native richness. Conversely, local total richness was independent of regional total richness, but was related to the reservoirs' environmental characteristics. It was hypothesised that the native fish communities in French reservoirs are unsaturated and species introductions lead to saturated communities. [source] Will northern fish populations be in hot water because of climate change?GLOBAL CHANGE BIOLOGY, Issue 10 2007SAPNA SHARMA Abstract Predicted increases in water temperature in response to climate change will have large implications for aquatic ecosystems, such as altering thermal habitat and potential range expansion of fish species. Warmwater fish species, such as smallmouth bass, Micropterus dolomieu, may have access to additional favourable thermal habitat under increased surface-water temperatures, thereby shifting the northern limit of the distribution of the species further north in Canada and potentially negatively impacting native fish communities. We assembled a database of summer surface-water temperatures for over 13 000 lakes across Canada. The database consists of lakes with a variety of physical, chemical and biological properties. We used general linear models to develop a nation-wide maximum lake surface-water temperature model. The model was extended to predict surface-water temperatures suitable to smallmouth bass and under climate-change scenarios. Air temperature, latitude, longitude and sampling time were good predictors of present-day maximum surface-water temperature. We predicted lake surface-water temperatures for July 2100 using three climate-change scenarios. Water temperatures were predicted to increase by as much as 18 °C by 2100, with the greatest increase in northern Canada. Lakes with maximum surface-water temperatures suitable for smallmouth bass populations were spatially identified. Under several climate-change scenarios, we were able to identify lakes that will contain suitable thermal habitat and, therefore, are vulnerable to invasion by smallmouth bass in 2100. This included lakes in the Arctic that were predicted to have suitable thermal habitat by 2100. [source] Reduction of a native fish fauna by alien species: an example from Brazilian freshwater tropical lakesFISHERIES MANAGEMENT & ECOLOGY, Issue 2 2004A. O. Latini Abstract The consequences of introducing Cichla cf. monoculus Spix & Agassiz, Astronotus ocellatus (Agassiz) and Pygocentrus nattereri Kner into lakes in the River Doce basin, Brazil, on richness, diversity and efficiency of aquatic macrophytes as natural refugia to native fishes was investigated. Samples were taken from lakes with and without alien fishes in areas with and without aquatic macrophytes. The presence of alien fishes reduced richness and diversity of the native fish community. The refugia function, which could be attributed to the clustering of aquatic macrophytes, does not exist in these lakes probably because the alien fishes exploit such habitats for reproduction. Since introductions threaten the native fish diversity of the region, studies on regional dispersion and factors that minimise the spread of alien fishes are needed. [source] Adaptive management of an environmental watering event to enhance native fish spawning and recruitmentFRESHWATER BIOLOGY, Issue 1 2010A. J. KING Summary 1. A common goal of many environmental flow regimes is to maintain and/or enhance the river's native fish community by increasing the occurrence of successful spawning and recruitment events. However, our understanding of the flow requirements of the early life history of fish is often limited, and hence predicting their response to specific managed flow events is difficult. To overcome this uncertainty requires the use of adaptive management principles in the design, implementation, monitoring and adjustment of environmental flow regimes. 2. The Barmah-Millewa Forest, a large river red gum forest on the Murray River floodplain, south-east Australia, contains a wide variety of ephemeral and permanent aquatic habitats suitable for fish. Flow regulation of the Murray River has significantly altered the natural flood regime of the Forest. In an attempt to alleviate some of the effects of river regulation, the Forest's water regime is highly managed using a variety of flow control structures and also receives targeted Environmental Water Allocations (EWA). In 2005, the largest environmental flow allocated to date in Australia was delivered at the Forest. 3. This study describes the adaptive management approach employed during the delivery of the 2005 EWA, which successfully achieved multiple ecological goals including enhanced native fish spawning and recruitment. Intensive monitoring of fish spawning and recruitment provided invaluable real-time and ongoing management input for optimising the delivery of environmental water to maximise ecological benefits at Barmah-Millewa Forest and other similar wetlands in the Murray-Darling Basin. 4. We discuss possible scenarios for the future application of environmental water and the need for environmental flow events and regimes to be conducted as rigorous, large-scale experiments within an adaptive management framework. [source] |