Native Conformation (native + conformation)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formation

FEBS JOURNAL, Issue 8 2005
Søren Vang
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most common hereditary cardiac conditions. Both are frequent causes of sudden death and are often associated with an adverse disease course. Alpha-cardiac actin is one of the disease genes where different missense mutations have been found to cause either HCM or DCM. We have tested the hypothesis that the protein-folding pathway plays a role in disease development for two actin variants associated with DCM and six associated with HCM. Based on a cell-free coupled translation assay the actin variants could be graded by their tendency to associate with the chaperonin TCP-1 ring complex/chaperonin containing TCP-1 (TRiC/CCT) as well as their propensity to acquire their native conformation. Some variant proteins are completely stalled in a complex with TRiC and fail to fold into mature globular actin and some appear to fold as efficiently as the wild-type protein. A fraction of the translated polypeptide became ubiquitinated and detergent insoluble. Variant actin proteins overexpressed in mammalian cell lines fail to incorporate into actin filaments in a manner correlating with the degree of misfolding observed in the cell-free assay; ranging from incorporation comparable to wild-type actin to little or no incorporation. We propose that effects of mutations on folding and fiber assembly may play a role in the molecular disease mechanism. [source]


Probing the unfolding region of ribonuclease A by site-directed mutagenesis

FEBS JOURNAL, Issue 20 2004
Jens Köditz
Ribonuclease A contains two exposed loop regions, around Ala20 and Asn34. Only the loop around Ala20 is sufficiently flexible even under native conditions to allow cleavage by nonspecific proteases. In contrast, the loop around Asn34 (together with the adjacent ,-sheet around Thr45) is the first region of the ribonuclease A molecule that becomes susceptible to thermolysin and trypsin under unfolding conditions. This second region therefore has been suggested to be involved in early steps of unfolding and was designated as the unfolding region of the ribonuclease A molecule. Consequently, modifications in this region should have a great impact on the unfolding and, thus, on the thermodynamic stability. Also, if the Ala20 loop contributes to the stability of the ribonuclease A molecule, rigidification of this flexible region should stabilize the entire protein molecule. We substituted several residues in both regions without any dramatic effects on the native conformation and catalytic activity. As a result of their remarkably differing stability, the variants fell into two groups carrying the mutations: (a) A20P, S21P, A20P/S21P, S21L, or N34D; (b) L35S, L35A, F46Y, K31A/R33S, L35S/F46Y, L35A/F46Y, or K31A/R33S/F46Y. The first group showed a thermodynamic and kinetic stability similar to wild-type ribonuclease A, whereas both stabilities of the variants in the second group were greatly decreased, suggesting that the decrease in ,G can be mainly attributed to an increased unfolding rate. Although rigidification of the Ala20 loop by introduction of proline did not result in stabilization, disturbance of the network of hydrogen bonds and hydrophobic interactions that interlock the proposed unfolding region dramatically destabilized the ribonuclease A molecule. [source]


Detection of a homotetrameric structure and protein,protein interactions of Paracoccidioides brasiliensis formamidase lead to new functional insights

FEMS YEAST RESEARCH, Issue 1 2010
Clayton Luiz Borges
Abstract Paracoccidioides brasiliensis causes paracoccidioidomycosis, a systemic mycosis in Latin America. Formamidases hydrolyze formamide, putatively plays a role in fungal nitrogen metabolism. An abundant 45-kDa protein was identified as the P. brasiliensis formamidase. In this study, recombinant formamidase was overexpressed in bacteria and a polyclonal antibody to this protein was produced. We identified a 180-kDa protein species reactive to the antibody produced in mice against the P. brasiliensis recombinant purified formamidase of 45 kDa. The 180-kDa purified protein yielded a heat-denatured species of 45 kDa. Both protein species of 180 and 45 kDa were identified as formamidase by peptide mass fingerprinting using MS. The identical mass spectra generated by the 180 and the 45-kDa protein species indicated that the fungal formamidase is most likely homotetrameric in its native conformation. Furthermore, the purified formamidase migrated as a protein of 191 kDa in native polyacrylamide gel electrophoresis, thus revealing that the enzyme forms a homotetrameric structure in its native state. This enzyme is present in the fungus cytoplasm and the cell wall. Use of a yeast two-hybrid system revealed cell wall membrane proteins, in addition to cytosolic proteins interacting with formamidase. These data provide new insights into formamidase structure as well as potential roles for formamidase and its interaction partners in nitrogen metabolism. [source]


SPICKER: A clustering approach to identify near-native protein folds

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 6 2004
Yang Zhang
Abstract We have developed SPICKER, a simple and efficient strategy to identify near-native folds by clustering protein structures generated during computer simulations. In general, the most populated clusters tend to be closer to the native conformation than the lowest energy structures. To assess the generality of the approach, we applied SPICKER to 1489 representative benchmark proteins ,200 residues that cover the PDB at the level of 35% sequence identity; each contains up to 280,000 structure decoys generated using the recently developed TASSER (Threading ASSembly Refinement) algorithm. The best of the top five identified folds has a root-mean-square deviation from native (RMSD) in the top 1.4% of all decoys. For 78% of the proteins, the difference in RMSD from native to the identified models and RMSD from native to the absolutely best individual decoy is below 1 Å; the majority belong to the targets with converged conformational distributions. Although native fold identification from divergent decoy structures remains a challenge, our overall results show significant improvement over our previous clustering algorithms. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 865,871, 2004 [source]


Identifying native-like protein structures using physics-based potentials

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 1 2002
Brian N. Dominy
Abstract As the field of structural genomics matures, new methods will be required that can accurately and rapidly distinguish reliable structure predictions from those that are more dubious. We present a method based on the CHARMM gas phase implicit hydrogen force field in conjunction with a generalized Born implicit solvation term that allows one to make such discrimination. We begin by analyzing pairs of threaded structures from the EMBL database, and find that it is possible to identify the misfolded structures with over 90% accuracy. Further, we find that misfolded states are generally favored by the solvation term due to the mispairing of favorable intramolecular ionic contacts. We also examine 29 sets of 29 misfolded globin sequences from Levitt's "Decoys ,R' Us" database generated using a sequence homology-based method. Again, we find that discrimination is possible with approximately 90% accuracy. Also, even in these less distorted structures, mispairing of ionic contacts results in a more favorable solvation energy for misfolded states. This is also found to be the case for collapsed, partially folded conformations of CspA and protein G taken from folding free energy calculations. We also find that the inclusion of the generalized Born solvation term, in postprocess energy evaluation, improves the correlation between structural similarity and energy in the globin database. This significantly improves the reliability of the hypothesis that more energetically favorable structures are also more similar to the native conformation. Additionally, we examine seven extensive collections of misfolded structures created by Park and Levitt using a four-state reduced model also contained in the "Decoys ,R' Us" database. Results from these large databases confirm those obtained in the EMBL and misfolded globin databases concerning predictive accuracy, the energetic advantage of misfolded proteins regarding the solvation component, and the improved correlation between energy and structural similarity due to implicit solvation. Z-scores computed for these databases are improved by including the generalized Born implicit solvation term, and are found to be comparable to trained and knowledge-based scoring functions. Finally, we briefly explore the dynamic behavior of a misfolded protein relative to properly folded conformations. We demonstrate that the misfolded conformation diverges quickly from its initial structure while the properly folded states remain stable. Proteins in this study are shown to be more stable than their misfolded counterparts and readily identified based on energetic as well as dynamic criteria. In summary, we demonstrate the utility of physics-based force fields in identifying native-like conformations in a variety of preconstructed structural databases. The details of this discrimination are shown to be dependent on the construction of the structural database. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 147,160, 2002 [source]


Simultaneous inactivation of the wprA and dltB genes of Bacillus subtilis reduces the yield of ,-amylase

LETTERS IN APPLIED MICROBIOLOGY, Issue 6 2002
K. Stephenson
Aims:,In Gram-positive bacteria, signal peptide-bearing secretory proteins are translocated through the cytoplasmic membrane and fold into their native conformation on the outside of the cell. The products of the Bacillus subtilis wprA and dltB genes separately influence post-translocational stages of the secretion process by mediating proteolytic degradation and folding of secretory proteins. Inactivation of either wprA or dltB in B. subtilis increases the yield of secretory proteins released into the culture medium in an intact and biologically active conformation. The aim of this work was to study the combined influence of these genes. Methods and Results:,A wprA/dltB double mutant was constructed, but did not have an additive effect on secretion and caused a significant reduction in the yield of ,-amylase. Conclusions and Significance:,The activities of the wprA gene and the dlt operon interact in a negative way to influence the growth cycle and protein secretion. The mechanism by which this may occur, and its potential significance for the secretion of native and non-native proteins from B. subtilis and related bacteria, is discussed. [source]


Collective Dynamics of Large Proteins from Mixed Coarse-Grained Elastic Network Model

MOLECULAR INFORMATICS, Issue 4 2005
Ozge Kurkcuoglu
Abstract Elastic network model- a coarse-grained normal mode analysis- is widely used to investigate the functionally important collective motions of proteins and their complexes. Mixed coarse-graining approach has been recently introduced to the elastic network model, so that the protein's native conformation can be modeled with regions of low and high resolution. In the mixed resolution model, each node of the elastic network may represent either a single atom (high-resolution) or a residue (low-resolution), and close-neighboring nodes are connected by harmonic springs. Here, the high-resolution parts constitute the interesting parts of the protein, such as the active site, while the rest of the structure is retained at lower resolution. By performing normal mode analysis of the resulting network, the collective dynamics (low-frequency modes) and consequent conformational changes can be analyzed even for supramolecular assemblages with reasonable computational efficiency, which may serve as a means of incorporating protein flexibility into docking algorithms and drug design. In this study, the mixed coarse-graining methodology is applied to analyze the functional motions of an important enzyme, triosephosphate isomerase. [source]


Characterization of two outer membrane protein antigens of Porphyromonas gingivalis that are protective in a murine lesion model

MOLECULAR ORAL MICROBIOLOGY, Issue 1 2004
B. C. Ross
Porphyromonas gingivalis is a key periodontal pathogen that has been implicated in the aetiology of chronic adult periodontitis. The aim of this study was to characterize two potential vaccine candidates (PG32 and PG33) identified from a previous genomic sequence analysis. Gene knockout studies suggested that these proteins play an important role in bacterial growth and are transcriptionally linked. Analysis of 14 laboratory and clinical isolates of P. gingivalis found that in all strains, both genes were present with a high level of conservation and that the two proteins were also expressed in vitro. Truncated recombinant PG32 and PG33 proteins were produced in Escherichia coli in an attempt to increase the solubility of the proteins while retaining their native conformation. While most of the truncated proteins remained insoluble, two truncated proteins showed good solubility and high levels of protection in the P. gingivalis murine lesion model and may be considered as potential vaccine candidates for further testing in models of human periodontal disease. [source]


Building native protein conformation from NMR backbone chemical shifts using Monte Carlo fragment assembly

PROTEIN SCIENCE, Issue 8 2007
Haipeng Gong
Abstract We have been analyzing the extent to which protein secondary structure determines protein tertiary structure in simple protein folds. An earlier paper demonstrated that three-dimensional structure can be obtained successfully using only highly approximate backbone torsion angles for every residue. Here, the initial information is further diluted by introducing a realistic degree of experimental uncertainty into this process. In particular, we tackle the practical problem of determining three-dimensional structure solely from backbone chemical shifts, which can be measured directly by NMR and are known to be correlated with a protein's backbone torsion angles. Extending our previous algorithm to incorporate these experimentally determined data, clusters of structures compatible with the experimentally determined chemical shifts were generated by fragment assembly Monte Carlo. The cluster that corresponds to the native conformation was then identified based on four energy terms: steric clash, solvent-squeezing, hydrogen-bonding, and hydrophobic contact. Currently, the method has been applied successfully to five small proteins with simple topology. Although still under development, this approach offers promise for high-throughput NMR structure determination. [source]


Reduction of the amyloidogenicity of a protein by specific binding of ligands to the native conformation

PROTEIN SCIENCE, Issue 4 2001
Fabrizio Chiti
AcP, acylphosphatase; CD, circular dichroism; TFE, 2,2,2-trifluoroethanol; TTR, transthyretin Abstract It is known that human muscle acylphosphatase (AcP) is able, under appropriate conditions in vitro, to aggregate and form amyloid fibrils of the type associated with human diseases. A number of compounds were tested for their ability to bind specifically to the native conformation of AcP under conditions favoring denaturation and subsequent aggregation and fibril formation. Compounds displaying different binding affinities for AcP were selected and their ability to inhibit protein fibrillization in vitro was evaluated. We found that compounds displaying a relatively high affinity for AcP are able to significantly delay protein fibrillization, mimicking the effect of stabilizing mutations; in addition, the effectiveness of such outcome correlates positively to both ligand concentration and affinity to the native state of AcP. By contrast, the inhibitory effect of ligands on AcP aggregation disappears in a mutant protein in which such binding affinity is lost. These results indicate that the stabilization of the native conformation of amyloidogenic proteins by specific ligand binding can be a strategy of general interest to inhibit amyloid formation in vivo. [source]


Direct evidence by H/D exchange and ESI-MS for transient unproductive domain interaction in the refolding of an antibody scFv fragment

PROTEIN SCIENCE, Issue 3 2000
Marcus Jäger
Abstract The refolding kinetics of a single-chain Fv (scFv) fragment, derived from a stabilized mutant of the phosphorylcholine binding antibody McPC603, was investigated by H/D exchange and ESI-MS and compared with the folding kinetics of its constituting domains VH and VL. Both VH and VL adopt essentially native-like exchange protection within the dead time of the manual-mixing H/D exchange experiment (10 s) and in the case of VL, which contains two cis -prolines in the native conformation, this fast protection is independent of proline cis/trans isomerization. At the earliest time point resolvable by manual mixing, fewer deuterons are protected in the scFv fragment than in the two isolated domains together, despite the fact that the scFv fragment is significantly more stable than VL and VH. Full H/D exchange protection in the scFv fragment is gained on a time scale of minutes. This means that the domains in the scFv fragment do not refold independently. Rather, they associate prematurely and in nonnative form, a kinetic trap. Unproductive domain association is observed both after equilibrium- and short-term denaturation. For the equilibrium-denatured scFv fragment, whose native structure formation is dependent on a cis conformation of an interface proline in VL, this cis/trans isomerization reaction proceeds about one order in magnitude more slowly than the escape from the trap to a conformation where full H/D exchange protection is already achieved. We interpret these data in terms of a general kinetic scheme involving intermediates with and without domain association. [source]


Detection of allergen specific immunoglobulins by microarrays coupled to microfluidics

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 8 2009
Marina Cretich Dr.
Abstract Allergen microarrays are under development for a component-resolved diagnosis of Type I (IgE-mediated) allergies. Here we report an improved microarray coupled to microfluidics for the detection of allergen specific immunoglobulin E (IgE). The signal intensity for IgE detection in serum has been improved by using glass slides coated with a novel poly[DMA- co -NAS] brush copolymer which is able to immobilize allergens in their native conformation and by carrying out the incubation step in dynamic conditions. The assay, fully automated, was performed in a microcell, using a software-controlled fluidic processor, to bring assay reagents on the surface of the array. Microfluidics turns the binding between serum immunoglobulins and immobilized allergens from a diffusion-limited to a kinetic-limited process by ensuring an efficient mixing of serum samples on the surface of the microarray. As a result of this, the binding of high affinity IgE antibodies is enhanced whereas that of low affinity IgG antibodies, which are present at higher concentration, is impaired paving the way to more accurate and sensitive results. [source]


Functional Characterization of the Recombinant N -Methyltransferase Domain from the Multienzyme Enniatin Synthetase

CHEMBIOCHEM, Issue 9 2007
Till Hornbogen Dr.
Abstract A 51 kDa fusion protein incorporating the N -methyltransferase domain of the multienzyme enniatin synthetase from Fusarium scirpi was expressed in Saccharomyces cerevisiae. The protein was purified and found to bind S -adenosyl methionine (AdoMet) as demonstrated by cross-linking experiments with 14C-methyl-AdoMet under UV irradiation. Cofactor binding at equilibrium conditions was followed by saturation transfer difference (STD) NMR spectroscopy, and the native conformation of the methyltransferase was assigned. STD NMR spectroscopy yielded significant signals for H2 and H8 of the adenine moiety, H1' of D -ribose, and SCH3 group of AdoMet. Methyl group transfer catalyzed by the enzyme was demonstrated by using aminoacyl- N -acetylcysteamine thioesters (aminoacyl-SNACs) of L -Val, L -Ile, and L -Leu, which mimic the natural substrate amino acids of enniatin synthetase presented by the enzyme bound 4,-phosphopantetheine arm. In these experiments the enzyme was incubated in the presence of the corresponding aminoacyl-SNAC and 14C-methyl-AdoMet for various lengths of time, for up to 30 min. N -[14C-Methyl]-aminoacyl-SNAC products were extracted with EtOAc and separated by TLC. Acid hydrolysis of the isolated labeled compounds yielded the corresponding N -[14C-methyl] amino acids. Further proof for the formation of N - 14C-methyl-aminoacyl-SNACs came from MALDI-TOF mass spectrometry which yielded 23,212 Da for N -methyl-valyl-SNAC, accompanied by the expected postsource decay (PSD) pattern. Interestingly, L -Phe, which is not a substrate amino acid of enniatin synthetase, also proved to be a methyl group acceptor. D -Val was not accepted as a substrate; this indicates selectivity for the L isomer. [source]


Structurally Minimized ,-Conotoxin Analogues as Sodium Channel Blockers: Implications for Designing Conopeptide-Based Therapeutics

CHEMMEDCHEM, Issue 3 2009
Tiffany
Abstract Transforming the neuroactive toxins of cone snails into small-size compounds poses a challenge due to the presence of multiple disulfide bridges. Herein we describe our successful efforts in minimizing the size of ,-conotoxin while retaining its biological activity. Disulfide bridges that stabilize the native conformation of conotoxins pose a challenge in the synthesis of smaller conotoxin analogues. Herein we describe the synthesis of a minimized analogue of the analgesic ,-conotoxin KIIIA that blocks two sodium channel subtypes, the neuronal NaV1.2 and skeletal muscle NaV1.4. Three disulfide-deficient analogues of KIIIA were initially synthesized in which the native disulfide bridge formed between either C1C9, C2C15, or C4C16 was removed. Deletion of the first bridge only slightly affected the peptide's bioactivity. To further minimize this analogue, the N-terminal residue was removed and two nonessential serine residues were replaced by a single 5-amino-3-oxapentanoic acid residue. The resulting "polytide" analogue retained the ability to block sodium channels and to produce analgesia. Until now, the peptidomimetic approach applied to conotoxins has progressed only modestly at best; thus, the disulfide-deficient analogues containing backbone spacers provide an alternative advance toward the development of conopeptide-based therapeutics. [source]