Navigator Echoes (navigator + echo)

Distribution by Scientific Domains


Selected Abstracts


Direct monitoring of coronary artery motion with cardiac fat navigator echoes

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2003
Thanh D. Nguyen
Abstract Navigator echoes (NAVs) provide an effective means of monitoring physiological motion in magnetic resonance imaging (MRI). Motion artifacts can be suppressed by adjusting the data acquisition accordingly. The standard pencil-beam NAV has been used to detect diaphragm motion; however, it does not monitor cardiac motion effectively. Here we report a navigator approach that directly measures coronary artery motion by exciting the surrounding epicardial fat and sampling the signal with a k -space trajectory sensitized to various motion parameters. The present preliminary human study demonstrates that superior-inferior (SI) respiratory motion of the coronary arteries detected by the cardiac fat NAV highly correlates with SI diaphragmatic motion detected by the pencil-beam NAV. In addition, the cardiac fat navigator gating is slightly more effective than the diaphragmatic navigator gating in suppressing motion artifacts in free-breathing 3D coronary MR angiography (MRA). Magn Reson Med 50:235,241, 2003. © 2003 Wiley-Liss, Inc. [source]


Diffusion-weighted imaging of the liver: Comparison of navigator triggered and breathhold acquisitions

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 3 2009
Bachir Taouli MD
Abstract Purpose To compare a free breathing navigator triggered single shot echoplanar imaging (SS EPI) diffusion-weighted imaging (DWI) sequence with prospective acquisition correction (PACE) with a breathhold (BH) DWI sequence for liver imaging. Materials and Methods Thirty-four patients were evaluated with PACE-DWI and BH DWI of the liver using b-values of 0, 50, and 500 s/mm2. There were 29 focal liver lesions in 18 patients. Qualitative evaluation was performed on a 3-point scale (1,3) by two independent observers (maximum score 9). Quantitative evaluation included estimated SNR (signal to noise ratio), lesion-to-liver contrast ratio, liver and lesion apparent diffusion coefficients (ADCs), and coefficient of variation (CV) of ADC in liver parenchyma and focal liver lesions (estimate of noise contamination in ADC). Results PACE-DWI showed significantly better image quality, higher SNR and lesion-to-liver contrast ratio when compared with BH DWI. ADCs of liver and focal lesions with both sequences were significantly correlated (r = 0.838 for liver parenchyma, and 0.904 for lesions, P < 0.0001), but lower with the BH sequence (P < 0.02). There was higher noise contamination in ADC measurement obtained with BH DWI (with a significantly higher SD and CV of ADC). Conclusion The use of a navigator echo to trigger SS EPI DWI improves image quality and liver to lesion contrast, and enables a more precise ADC quantification compared with BH DWI acquisition. J. Magn. Reson. Imaging 2009;30:561,568. © 2009 Wiley-Liss, Inc. [source]


Implications of bulk motion for diffusion-weighted imaging experiments: Effects, mechanisms, and solutions

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 4 2001
David G. Norris PhD
Abstract This review article describes the effect of bulk motion on diffusion-weighted imaging experiments, and examines methods for correcting the resulting artifacts. The emphasis throughout the article is on two-dimensional imaging of the brain. The effects of translational and rotational motion on the MR signal are described, and the literature concerning pulsatile brain motion is examined. Methods for ameliorating motion effects are divided into three generic categories. The first is methods that should be intrinsically insensitive to macroscopic motion. These include motion-compensated diffusion-weighting schemes, single-shot EPI, projection reconstruction, and line scanning. Of these, only single-shot EPI and projection reconstruction methods can obtain high-quality images without compromising on sensitivity. The second category of methods is those that can be made insensitive to bulk motion. The methods examined here are FLASH and RARE. It is shown that for both sequences motion insensitivity is in general attained only at the cost of a 50% reduction in sensitivity. The final set of methods examined are those that correct for motion, primarily navigator echoes. The properties and limitations of the navigator echo approach are presented, as are those of methods which attempt to correct the acquired data by minimizing image artifacts. The review concludes with a short summary in which the current status of diffusion imaging in the presence of bulk motion is examined. J. Magn. Reson. Imaging 2001;13:486,495. © 2001 Wiley-Liss, Inc. [source]


Combination of multidimensional navigator echoes data from multielement RF coil

MAGNETIC RESONANCE IN MEDICINE, Issue 4 2010
Junmin Liu
Abstract Until now, only one-dimensional navigator-echo techniques have been implemented with multielement RF coils. For the multidimensional navigator echoes, which extract six-degree of freedom motion information from the raw k-space data, an efficient raw data combination approach is needed. In this work, three combination approaches, including summation of the complex raw data, summation following phase alignment, and summation of the squares of the k-space magnitude profiles, were evaluated with the spherical navigator echoes (SNAV) technique. In vivo brain imaging experiments were used to quantify accuracy and precision and demonstrated that SNAVs acquired with an eight-channel head coil can determine the rotation and translation in range up to 10° and 20 mm with subdegree and submillimeter accuracy, respectively. Results from a 3D brain volume realignment experiment showed excellent agreement between baseline images and SNAV-aligned follow-up volumes. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc. [source]


Generalized MRI reconstruction including elastic physiological motion and coil sensitivity encoding

MAGNETIC RESONANCE IN MEDICINE, Issue 6 2008
Freddy Odille
Abstract This article describes a general framework for multiple coil MRI reconstruction in the presence of elastic physiological motion. On the assumption that motion is known or can be predicted, it is shown that the reconstruction problem is equivalent to solving an integral equation,known in the literature as a Fredholm equation of the first kind,with a generalized kernel comprising Fourier and coil sensitivity encoding, modified by physiological motion information. Numerical solutions are found using an iterative linear system solver. The different steps in the numerical resolution are discussed, in particular it is shown how over-determination can be used to improve the conditioning of the generalized encoding operator. Practical implementation requires prior knowledge of displacement fields, so a model of patient motion is described which allows elastic displacements to be predicted from various input signals (e.g., respiratory belts, ECG, navigator echoes), after a free-breathing calibration scan. Practical implementation was demonstrated with a moving phantom setup and in two free-breathing healthy subjects, with images from the thoracic-abdominal region. Results show that the method effectively suppresses the motion blurring/ghosting artifacts, and that scan repetitions can be used as a source of over-determination to improve the reconstruction. Magn Reson Med, 2008. © 2008 Wiley-Liss, Inc. [source]


Navigator gating and volume tracking for double-triggered cardiac proton spectroscopy at 3 Tesla

MAGNETIC RESONANCE IN MEDICINE, Issue 6 2004
Michael Schär
Abstract Respiratory motion compensation based on navigator echoes for double-triggered cardiac proton spectroscopy at 3.0T is presented. The navigators measure the displacement of the liver,lung interface during free breathing. This information allows for double triggering on a defined window within the respiratory cycle and on a defined trigger delay after the R-wave based on the ECG. Furthermore, it allows the excitation volume to be shifted by the determined respiratory displacement within the defined window in real-time (volume tracking). Static and motion phantom experiments were performed in this study, and it was demonstrated that volume tracking permits the suppression of signal from tissue next to the localized volume. However, triggering on a defined respiratory position is still necessary to achieve high spectral quality, because shimming and water suppression calibration are only optimal for a small window of the respiratory cycle. Single-volume spectra obtained in the myocardial septum of healthy subjects are presented. Magn Reson Med 51:1091,1095, 2004. © 2004 Wiley-Liss, Inc. [source]


Direct monitoring of coronary artery motion with cardiac fat navigator echoes

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2003
Thanh D. Nguyen
Abstract Navigator echoes (NAVs) provide an effective means of monitoring physiological motion in magnetic resonance imaging (MRI). Motion artifacts can be suppressed by adjusting the data acquisition accordingly. The standard pencil-beam NAV has been used to detect diaphragm motion; however, it does not monitor cardiac motion effectively. Here we report a navigator approach that directly measures coronary artery motion by exciting the surrounding epicardial fat and sampling the signal with a k -space trajectory sensitized to various motion parameters. The present preliminary human study demonstrates that superior-inferior (SI) respiratory motion of the coronary arteries detected by the cardiac fat NAV highly correlates with SI diaphragmatic motion detected by the pencil-beam NAV. In addition, the cardiac fat navigator gating is slightly more effective than the diaphragmatic navigator gating in suppressing motion artifacts in free-breathing 3D coronary MR angiography (MRA). Magn Reson Med 50:235,241, 2003. © 2003 Wiley-Liss, Inc. [source]


Volume tracking cardiac 31P spectroscopy

MAGNETIC RESONANCE IN MEDICINE, Issue 2 2002
Sebastian Kozerke
Abstract The limited reliability and accuracy of cardiac spectroscopy have been partly attributed to effects from respiratory motion. In this work, we developed a prospective volume tracking method for respiratory motion compensation based on multiple navigator echoes and demonstrated its application in cardiac 31P spectroscopy. The sequence consists of two 2D selective excitation pulses preceding the spectroscopic experiment to sample respiratory motion components. The navigator information is evaluated in real-time to calculate the shift of the heart from respiration. Based on the displacement information, the spectroscopic volume and/or grid position is prospectively corrected to track the volume of interest. The method was validated with a moving compartment phantom simulating in vivo respiratory motion. With volume tracking, no signal contamination was apparent. Spectra obtained in 14 healthy volunteers were evaluated using time-domain fitting procedures. The fitting accuracy improved consistently with volume tracking compared to data from non-navigated reference acquisitions. Compared to other gating approaches available for spectroscopy, the current technique does not degrade the scan efficiency, thus allowing effective use of scan time. Magn Reson Med 48:380,384, 2002. © 2002 Wiley-Liss, Inc. [source]


Online motion correction for diffusion-weighted imaging using navigator echoes: Application to RARE imaging without sensitivity loss

MAGNETIC RESONANCE IN MEDICINE, Issue 5 2001
David G. Norris
Abstract This article describes the first application of true online motion correction to diffusion-weighted RARE imaging. Two orthogonal navigator echoes were acquired and zeroth and first-order phase corrections applied in less than 8 ms between a diffusion-weighted magnetization preparation and data acquisition using the RARE sequence. The zeroth-order phase correction was realized by pulsing the system's B0 -coil: the first-order error corrected with appropriate magnetic field gradient pulses. Online correction ensured that no irreversible signal loss could occur in the imaging experiment. Diffusion-weighted images of the brain were obtained from healthy volunteers. EGG-triggered acquisition was applied at 400 ms after the R-wave. Data were acquired on a matrix of 256 × 256 with a RARE factor of 16 and a b -value of 804 smm,2. The images obtained with online motion correction showed a remarkably high image quality, while those acquired without motion correction were severely degraded by artifacts. Magn Reson Med 45:729,733, 2001. © 2001 Wiley-Liss, Inc. [source]