Home About us Contact | |||
Nanofiltration Membranes (nanofiltration + membrane)
Selected AbstractsInitial Deposition of Colloidal Particles on a Rough Nanofiltration MembraneTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2007Tania Rizwan Abstract The initial rate of colloid deposition onto semi-permeable membranes is largely controlled by the coupled influence of permeation drag and particle-membrane colloidal interactions. Recent studies show that the particle-membrane interactions are subject to immense local variations due to the inherent morphological heterogeneity (roughness) of reverse osmosis (RO) and nanofiltration (NF) membranes. This experimental investigation reports the effect of membrane roughness on the initial deposition of polystyrene latex particles on a rough NF membrane during cross flow membrane filtration under different operating pressures and solution chemistries. Atomic force microscopy was used to characterize the roughness of the membrane and observe the structure of particle deposits. At the initial stages of fouling, the AFM images show that more particles preferentially accumulate near the "peaks" than in the "valleys" of the rough NF membrane surface. Le taux initial de la déposition colloïdale sur des membranes semi-perméables est largement contrôlé par l'influence couplée entre la traînée de perméation et les interactions colloïdales membrane-particules. Des études récentes montrent que les interactions membranes-particules sont sujettes à d'immenses variations locales en raison de l'hétérogénéité morphologique inhérente (rugosité) des membranes d'osmose inverse (RO) et de nanofiltration (NF). Cette étude expérimentale décrit l'effet de la rugosité des membranes sur la déposition initiale de particules de latex de polystyrène sur une membrane NF rugueuse lors de la filtration des membranes en écoulement transversal pour différentes conditions opératoires et compositions chimiques des solutions. On a eu recours à la microscopie à force atomique pour caractériser la rugosité de la membrane et observer la structure des dépôts de particules. Aux stades initiaux du refoulement, les images AFM montrent que les particules s'accumulent préférentiellement près des «pics» plutôt que dans les «vallées» de la surface de membrane NF rugueuse. [source] Physico-Chemical Characterization of Nanofiltration MembranesCHEMPHYSCHEM, Issue 3 2007Katleen Boussu Abstract This study presents a methodology for an in-depth characterization of six representative commercial nanofiltration membranes. Laboratory-made polyethersulfone membranes are included for reference. Besides the physical characterization [molecular weight cut-off (MWCO), surface charge, roughness and hydrophobicity], the membranes are also studied for their chemical composition [attenuated total reflectance Fourier spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS)] and porosity [positron annihilation spectroscopy (PAS)]. The chemical characterization indicates that all membranes are composed of at least two different layers. The presence of an additional third layer is proved and studied for membranes with a polyamide top layer. PAS experiments, in combination with FIB (focused ion beam) images, show that these membranes also have a thinner and a less porous skin layer (upper part of the top layer). In the skin layer, two different pore sizes are observed for all commercial membranes: a pore size of 1.25,1.55 Å as well as a pore size of 3.20,3.95 Å (both depending on the membrane type). Thus, the pore size distribution in nanofiltration membranes is bimodal, in contrast to the generally accepted log-normal distribution. Although the pore sizes are rather similar for all commercial membranes, their pore volume fraction and hence their porosity differ significantly. [source] Theoretical studies on structural and electrical properties of PES/SPEEK blend nanofiltration membraneAICHE JOURNAL, Issue 8 2009A. F. Ismail Abstract Polyethersulfone (PES) nanofiltration membranes were prepared using a simple dry-jet wet spinning technique with different contents of sulfonated poly(ether ether ketone) (SPEEK) ranging from 0 to 4 wt %. The structural parameters (rp and Ak/,x) and electrostatic properties (, and X) of the blend membranes were deduced by employing the combination of irreversible thermodynamic model, steric hindrance pore (SHP) model, and Teorell-Meyer-Sievers (TMS) model. The modeling results obtained have been analyzed and discussed. The mean pore radius and pore size distribution of the blends were also determined based on the theoretical models. The results showed that pore radius increased with increasing the concentration of SPEEK from 0 to 2 wt % but decreased with a further increase in SPEEK content. The water flux, however, showed a systematically increase with increasing SPEEK content. The SPEEK also showed significant effect on membrane electrical properties. Both effective charge density and ratio of effective charge density to electrolyte solution increased with increasing concentration of SPEEK in the dope solution, reaching a value of ,21.02 and ,2.29, respectively. The pore radius which was determined by using different transport models has also been analyzed and discussed. It is found that the addition of SPEEK into dope solution is one of the paramount parameters in developing the negatively charged nanofiltration membrane with enhanced water flux while retaining the pore radius in the nanometer range. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Linearized transport model for nanofiltration: Development and assessmentAICHE JOURNAL, Issue 4 2002W. Richard Bowen Finite difference linearization of pore concentration gradient in nanofiltration membranes greatly simplifies the solution of a three-parameter model (pore radius, membrane charge, and pore dielectric constant) for electrolyte rejection by removing the requirement for numerical integration of the extended Nernst,Planck equation. The validity of the linearized model is first experimentally tested by comparing with a rigorous characterization of the Desal-DK nanofiltration membrane, the linearized model closely agreeing with the numerical solution of the full model. Investigation of pore concentration profiles showed the assumption of linearity to be valid over a wide range of nanofiltration conditions. The linearized model was also successfully extended to ternary electrolyte mixtures, highlighting its main advantage over analytic solutions. Overall, the model is a powerful tool for characterization of nanofiltration membranes and subsequent prediction of separation performance. Computational demands are modest in terms of time and complexity. [source] ,Click' Dendritic Phosphines: Design, Synthesis, Application in Suzuki Coupling, and Recycling by NanofiltrationADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 3 2009Michèle Janssen Abstract A new synthetic route towards stable molecular-weight enlarged monodentate phosphine ligands via ,click' chemistry was developed. These ligands were applied in the Pd-catalyzed Suzuki,Miyaura coupling of aryl halides and phenyl boronic acid. The supported systems show very similar activities compared to the unsupported analogues. Moreover, recycling experiments by means of nanofiltration using ceramic nanofiltration membranes demonstrate that these systems can be recovered and reused efficiently. [source] Chemical modification of polyethersulfone nanofiltration membranes: A reviewJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2009B. Van der Bruggen Abstract Polysulfone (PS) and poly(ether)sulfone (PES) are often used for synthesis of nanofiltration membranes, due to their chemical, thermal, and mechanical stability. The disadvantage for applying PS/PES is their high hydrophobicity, which increases membrane fouling. To optimize the performance of PS/PES nanofiltration membranes, membranes can be modified. An increase in membrane hydrophilicity is a good method to improve membrane performance. This article reviews chemical (and physicochemical) modification methods applied to increase the hydrophilicity of PS/PES nanofiltration membranes. Modification of poly(ether)sulfone membranes in view of increasing hydrophilicity can be carried out in several ways. Physical or chemical membrane modification processes after formation of the membrane create more hydrophilic surfaces. Such modification processes are (1) graft polymerization that chemically attaches hydrophilic monomers to the membrane surface; (2) plasma treatment, that introduces different functional groups to the membrane surface; and (3) physical preadsorption of hydrophilic components to the membrane surface. Surfactant modification, self-assembly of hydrophilic nanoparticles and membrane nitrification are also such membrane modification processes. Another approach is based on modification of polymers before membrane formation. This bulk modification implies the modification of membrane materials before membrane synthesis of the incorporation of hydrophilic additives in the membrane matrix during membrane synthesis. Sulfonation, carboxylation, and nitration are such techniques. To conclude, polymer blending also results in membranes with improved surface characteristics. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Direct filtration of Procion dye bath wastewaters by nanofiltration membranes: flux and removal characteristicsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 12 2003Ismail Koyuncu Abstract The treatment and reuse of industrial wastewaters by membrane processes has become more attractive in the last few years due to constraints on water usage. The aim of this study was to investigate the direct filtration of reactive dye house wastewaters by nanofiltration membranes based on permeate flux, and sodium chloride and colour removal. Experiments were performed using both synthetic and industrial dye bath wastewaters with the fluxes of the industrial dye bath wastewaters lower than those of the synthetic solutions. The effects of operating conditions such as pressure and pH were assessed. Studies with DS5 DK type (polysulfone,polyamide) membranes showed that nanofiltration membranes are suitable for direct treatment of wastewaters and the permeate quality was appropriate for reuse in the dyeing process. Pre-treatment and neutralisation were important for recovery of large amounts of salt and water from the permeate stream. Neutralisation of the solution with HCl rather than H2SO4 gave a better permeate from the point of view of the reuse. The highest permeate flux and colour removal and the lowest salt removal were achieved with the HCl neutralisation. Copyright © 2003 Society of Chemical Industry [source] Polyamide-imide nanofiltration hollow fiber membranes with elongation-induced nano-pore evolutionAICHE JOURNAL, Issue 6 2010Shi Peng Sun Abstract The molecular design of nanoporous membranes with desired morphology and selectivity has attracted significant interest over the past few decades. A major problem in their applications is the trade-off between sieving property and permeability. Here, we report the discovery of elongation-induced nano-pore evolution during the external stretching of a novel polyamide-imide nanofiltration hollow fiber membrane in a dry-jet wet-spinning process that simultaneously leads to a decreased pore size but increased pure water permeability. The molecular weight cutoff, pore size, and pore size distribution were finely tuned using this approach. AFM and polarized FTIR verified the nano-pore morphological evolution and an enhanced molecular orientation in the surface skin layer. The resultant nanofiltration membranes exhibit highly effective fractionation of the monovalent and divalent ions of NaCl/Na2SO4 binary salt solutions. More than 99.5% glutathione can be rejected by the nanofiltration membranes at neutral pH, offering the feasibility of recovering this tripeptide. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] Theoretical studies on structural and electrical properties of PES/SPEEK blend nanofiltration membraneAICHE JOURNAL, Issue 8 2009A. F. Ismail Abstract Polyethersulfone (PES) nanofiltration membranes were prepared using a simple dry-jet wet spinning technique with different contents of sulfonated poly(ether ether ketone) (SPEEK) ranging from 0 to 4 wt %. The structural parameters (rp and Ak/,x) and electrostatic properties (, and X) of the blend membranes were deduced by employing the combination of irreversible thermodynamic model, steric hindrance pore (SHP) model, and Teorell-Meyer-Sievers (TMS) model. The modeling results obtained have been analyzed and discussed. The mean pore radius and pore size distribution of the blends were also determined based on the theoretical models. The results showed that pore radius increased with increasing the concentration of SPEEK from 0 to 2 wt % but decreased with a further increase in SPEEK content. The water flux, however, showed a systematically increase with increasing SPEEK content. The SPEEK also showed significant effect on membrane electrical properties. Both effective charge density and ratio of effective charge density to electrolyte solution increased with increasing concentration of SPEEK in the dope solution, reaching a value of ,21.02 and ,2.29, respectively. The pore radius which was determined by using different transport models has also been analyzed and discussed. It is found that the addition of SPEEK into dope solution is one of the paramount parameters in developing the negatively charged nanofiltration membrane with enhanced water flux while retaining the pore radius in the nanometer range. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Linearized transport model for nanofiltration: Development and assessmentAICHE JOURNAL, Issue 4 2002W. Richard Bowen Finite difference linearization of pore concentration gradient in nanofiltration membranes greatly simplifies the solution of a three-parameter model (pore radius, membrane charge, and pore dielectric constant) for electrolyte rejection by removing the requirement for numerical integration of the extended Nernst,Planck equation. The validity of the linearized model is first experimentally tested by comparing with a rigorous characterization of the Desal-DK nanofiltration membrane, the linearized model closely agreeing with the numerical solution of the full model. Investigation of pore concentration profiles showed the assumption of linearity to be valid over a wide range of nanofiltration conditions. The linearized model was also successfully extended to ternary electrolyte mixtures, highlighting its main advantage over analytic solutions. Overall, the model is a powerful tool for characterization of nanofiltration membranes and subsequent prediction of separation performance. Computational demands are modest in terms of time and complexity. [source] Remediation with cyclodextrin: Recovery of the remedial agent by membrane filtrationREMEDIATION, Issue 3 2007Thomas B. Boving Cyclodextrin-enhanced flushing of contaminants from the subsurface is a promising innovative remediation technology. It will become more economically viable at more sites if methods can be developed to recover and reconcentrate the cyclodextrin solution after it has been flushed through an aquifer. The goal of this study was to determine if membrane technology is capable of meeting that need. Five membranes with different material properties were tested for this purpose in the laboratory. The results of these tests indicate that there are large differences both in the efficiency of these membranes to extract hydroxpropyl-,-cyclodextrin (HPCD) and their stability when exposed to trichloroethylene (TCE) at concentrations near aqueous solubility. Not only does the molecular weigh cutoff (MWCO) of a membrane determine if HPCD can be retained, but crucial selection criteria are the membrane's resistance and compatibility with TCE. Of the five membrane materials tested, only two (polymer composite membrane and polysulfone) met both these requirements. The polymer composite membrane (MPF-44) showed reliable and stable HPCD recoveries (>95 percent) even when exposed to high TCE concentrations. The polysulfone membrane showed high HPCD recoveries, 88.5 ± 0.4 percent to 97 percent ±1 percent for ultrafiltration and nanofiltration membranes, respectively. However, membrane swelling and deterioration became a problem at high TCE concentrations (>1,000 mg/L). These problems diminished when the TCE concentration was less than 1 mg/L. Field tests demonstrated that batch mode treatment by ultrafiltration doubled the cyclodextrin concentration from 5 to 10 percent within three hours at a constant operating pressure of 13 psi. Under continuous single-pass treatment conditions, cyclodextrin concentration also increased, although the rate of increase was much smaller than in batch mode. Overall, these tests showed that cyclodextrin recovery is possible under field conditions. © 2007 Wiley Periodicals, Inc. [source] Physico-Chemical Characterization of Nanofiltration MembranesCHEMPHYSCHEM, Issue 3 2007Katleen Boussu Abstract This study presents a methodology for an in-depth characterization of six representative commercial nanofiltration membranes. Laboratory-made polyethersulfone membranes are included for reference. Besides the physical characterization [molecular weight cut-off (MWCO), surface charge, roughness and hydrophobicity], the membranes are also studied for their chemical composition [attenuated total reflectance Fourier spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS)] and porosity [positron annihilation spectroscopy (PAS)]. The chemical characterization indicates that all membranes are composed of at least two different layers. The presence of an additional third layer is proved and studied for membranes with a polyamide top layer. PAS experiments, in combination with FIB (focused ion beam) images, show that these membranes also have a thinner and a less porous skin layer (upper part of the top layer). In the skin layer, two different pore sizes are observed for all commercial membranes: a pore size of 1.25,1.55 Å as well as a pore size of 3.20,3.95 Å (both depending on the membrane type). Thus, the pore size distribution in nanofiltration membranes is bimodal, in contrast to the generally accepted log-normal distribution. Although the pore sizes are rather similar for all commercial membranes, their pore volume fraction and hence their porosity differ significantly. [source] |