Home About us Contact | |||
Nano
Terms modified by Nano Selected AbstractsHighly Porous Nano- and Microstructured Films Loaded with Bioactive Agents for Biomedical Applications: Structure,Release Profile EffectsADVANCED ENGINEERING MATERIALS, Issue 8 2009Adi Rachelson The current study focuses on the nanostructuring of our new drug-eluting porous films and its effect on the drug release profile of both hydrophilic and hydrophobic drugs. Nanostructuring was obtained using both the dispersion and the condensation methods of emulsion processing. These new highly porous nanostructured films can be used as basic elements of various drug-eluting medical devices. [source] Periodic Micropatterning of Polyethylene Glycol Diacrylate Hydrogel by Laser Interference Lithography Using Nano- and Femtosecond Pulsed Lasers,ADVANCED ENGINEERING MATERIALS, Issue 3 2009Andrés F. Lasagni In this article, we report on the fabrication of periodic arrays using multibeam laser interference patterning (MLI) with both nanosecond and femtosecond lasers on hydrogel materials. Configurations involving two, four, and five laser beams were utilized being able to produce a wide range of periodic arrays. [source] Mechanical Properties and Environmental Behavior of a Magnesium Alloy with a Nano-/Sub-Micron StructureADVANCED ENGINEERING MATERIALS, Issue 9 2007E. Aghion Abstract Newly developed magnesium alloys with a consolidated nano/sub-micron structure and substantially higher specific strength may be considered as an interesting candidate for super-light high-strength applications. Consolidated nano/sub-micron structure applies to alloys with a combined microstructure of nano-crystalline and sub-micron grains. The aim of the present study was to explore the mechanical and environmental behavior of a consolidated nano/sub-micron magnesium alloy with the composition of AZ31. This was required in order to evaluate the applicability of this new structured alloy for practical applications. Although the nano/sub-micron structured alloy has more than twice the hardness and strength of the conventional alloy, its ductility and corrosion resistance were significantly lower. In addition, its stress corrosion characteristics were inferior. The significant limitation of the nano-structured alloy, in terms of ductility and corrosion performance, restricts its potential use as a structural material for practical applications. [source] High-Surface-Area Nanoporous Boron Carbon Nitrides for Hydrogen StorageADVANCED FUNCTIONAL MATERIALS, Issue 11 2010David Portehault Abstract Nano- and mesoporous boron carbon nitrides with very high surface areas up to 1560,m2,g,1 are obtained by pyrolysis of a graphitic carbon nitride mpg-C3N4 infiltrated with a borane complex. This reactive hard-templating approach provides easy composition and texture tuning by temperature adjustment between 800 and 1400,°C. The process yields BxCyNzOvHw materials as direct copies of the initial template with controlled compositions of 0.15,,,x,,,0.36, 0.10,,,y,,,0.12, 0.14,,,z,,, 0.32, and 0.11,,,v,,,0.28. The nano and mesoporosities can also be tuned in order to provide hierarchical materials with specific surface areas ranging from 610 to 1560,m2,g,1. Such high values, coupled with resistance against air oxidation up to 700,°C, suggest potential materials for gas storage and as catalyst supports. Indeed, it is demonstrated that these compounds exhibit high and tunable H2 uptakes from 0.55 to 1.07,wt.% at 77,K and 1 bar, thus guiding further search of materials for hydrogen storage. [source] Light-Triggered Self-Assembly of a Spiropyran-Functionalized Dendron into Nano-/Micrometer-Sized Particles and Photoresponsive Organogel with Switchable FluorescenceADVANCED FUNCTIONAL MATERIALS, Issue 1 2010Qun Chen Abstract The synthesis, self-assembly, and spectroscopic investigations of spiropyran (SP)-functionalized dendron 1 are reported. Under UV light irradiation, assembly of 1 into nano-/microparticles occurs due to the transformation of the closed form of SP into the open merocyanine (MC) form. The formation of these nano-/microparticles is confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) experiments in addition to the confocal laser scanning microscopy (CLSM) measurements. These nano-/microparticles exhibit relatively strong red emission. It is interesting to note that the direct cooling of the toluene/benzene solution of 1 to 0,°C leads to gel formation. Multivalent ,,, interactions due to the dendron in 1 may be the driving-force for the gelation. The UV light irradiation cannot destroy the gel phase, and in fact, the gel,gel transition is successfully realized. The purple-blue gel exhibits relatively strong red fluorescence; moreover, the fluorescence can be reversibly switched by alternating UV and visible light irradiation. The results clearly indicate that the MC form after aggregation becomes more stable and fluorescent. [source] Formation of Metal Nano- and Micropatterns on Self-Assembled Monolayers by Pulsed Laser Deposition Through Nanostencils and Electroless Deposition,ADVANCED FUNCTIONAL MATERIALS, Issue 10 2006A. Speets Abstract Patterns of noble-metal structures on top of self-assembled monolayers (SAMs) on Au and SiO2 substrates have been prepared following two approaches. The first approach consists of pulsed laser deposition (PLD) of Pt, Pd, Au, or Cu through nano- and microstencils. In the second approach, noble-metal cluster patterns deposited through nano- and microstencils are used as catalysts for selective electroless deposition (ELD) of Cu. Cu structures are grown on SAMs on both Au and SiO2 substrates and are subsequently analyzed using X-ray photoelectron spectroscopy element mapping, atomic force microscopy, and optical microscopy. The combination of PLD through stencils on SAMs followed by ELD is a new method for the creation of (sub)-micrometer-sized metal structures on top of SAMs. This method minimizes the gas-phase deposition step, which is often responsible for damage to, or electrical shorts through, the SAM. [source] Artificial DNA Nano-Spring Powered by ProtonsADVANCED MATERIALS, Issue 25 2010Chunyan Wang A novel multifunctional, proton-fueled DNA nano-spring has been constructed. By incorporation of the G-quadruplex/i-motif sequence into the assembly, the nanodevice can perform spring-like motions in response to changes in the environmental pH without permanent deformation. Nanosized objects/functional groups could be assembled/disassembled into this system in an addressable, contractile, and reversible manner. [source] Coaxial Metal Nano-/Microcables with Isolating Sheath: Synthetic Methodology and Their Application as InterconnectsADVANCED MATERIALS, Issue 17 2010Min-Rui Gao Abstract Synthesis of coaxial nano-/microcables has been an intensive research subject due to their heterogeneous structures, tuneable properties, and important applications in nano-/micrometer-scale electronic and optoelectronic devices. Research on the fabrication of nanocables via solution strategies has made great progress in the past few years. In this Research News article, rapidly emerging new solution strategies such as hydrothermal carbonization (HTC) and synergistic soft,hard templates (SSHTs) are highlighted. Unique and flexible coaxial nano-/microcables synthesized by those methods have obvious advantages such as long-term stability and their electrical transport properties, compared with bare counterparts, suggesting that they are potential candidates as interconnects in the future. [source] Monodisperse, Polymeric Nano- and Microsieves Produced with Interference HolographyADVANCED MATERIALS, Issue 17 2009An Maria Prenen Monodisperse microfiltration membranes are fabricated using interference lithography. The versatility of this technique to produce polymeric membranes optimized for flow and selectivity characteristics with a wide variety of pore geometries and dimensions is demonstrated. [source] Mechanically Stretching Folded Nano- ,-b; -stacks Reveals Pico-Newton Attractive ForcesADVANCED MATERIALS, Issue 7 2009Jung Sook Kim Picoforce atomic force microscopy (AFM) and specific DNA hybridization have been used to lock on to synthetic nano-,-stacks, revealing the secrets of thermophilic, albeit weak, ,,, interactions. A cone-shaped dendron created an appropriate lateral spacing to ensure that most times a single stack was confined between the tip and the substrate, eliminating undesired multi-molecular pulling and greatly simplifying data analysis. [source] Controlling the Size and Morphology of TiO2 Powder by Molten and Solid Salt SynthesisJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2008Banasri Roy Nano and submicrometer scale titanium oxide (TiO2) powders were synthesized by solid and molten salt synthesis (SSS and MSS) from amorphous titanium hydroxide precipitate. Sodium chloride (NaCl) and dibasic sodium phosphate (Na2HPO4·2H2O, DSP) separately or as mixture with different weight ratios were used as the salts. At the eutectic salt composition (20% DSP/80% NaCl), the microstructure and phase composition of the TiO2 was changed from equiaxed nanoparticles of anatase with size ,40,50 nm, to mixed microstructure of bundle and acicular particles of rutile with 0.05,0.2 ,m diameter, 6,10 ,m length, and aspect ratio 20,60 depending on treatment time and temperature. At high temperature (825°C) and long time (30 h), microstructural differences were significant for the powders treated with different salts. Particle morphologies ranged from equiaxed, to acicular, to bundles, to nanofibers with very high aspect ratio. At lower treatment temperature (725°C) for shorter time (3 h), the morphology of the products did not change with different salt compositions, but the crystallite sizes changed appreciably. Different starting titanium precursors influenced particle size at lower temperature and time. Titanium hydroxide heat treated without salt resulted in significant grain growth and fused secondary particles, as compared with more finely separated and lightly agglomerated powders resulting from SSS and MSS treatments. [source] Microstructure of Nanocrystalline Yttria-Doped Zirconia Thin Films Obtained by Sol,Gel ProcessingJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2008Benjamin Butz Nano- and microcrystalline yttria-stabilized zirconia (YSZ) thin films with a dopant concentration of 8.3±0.3 mol% Y2O3 were prepared with a variation in grain size by two orders of magnitude. A sol,gel-based method with consecutive rapid thermal annealing was applied to fabricate YSZ films, resulting in about 400 nm YSZ on sapphire substrates. The average grain sizes were varied between 5 nm and 0.5 ,m by heat treatment in the temperature range of 650°,1350°C for 24 h. High-resolution (HRTEM) and conventional transmission electron microscopy analyses confirmed specimens,irrespective of the thermal treatment,consisting of cubic (c -)ZrO2 grains with nanoscaled tetragonal precipitates coherently embedded in the cubic matrix. Energy-dispersive X-ray spectroscopy and HRTEM on a large number of specimens yielded a homogeneous yttria concentration within the grains and at the grain boundaries with the absence of impurities, i.e. silica at the grain boundaries. [source] Comparative Characterization of PP Nano- and Microcomposites by In-Mold Shrinkage Measurements and Structural CharacteristicsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 6 2007Rodolfo Revilla-Díaz Abstract Poly(propylene)-clay nanocomposites and poly(propylene) containing conventional inorganic fillers such as calcium carbonate (CaCO3) and glass fiber were used in a comparative study focusing on dimensional stability, structure, mechanical and thermal properties. Micro- and nanocomposites were prepared by melt blending in a twin-screw extruder. The relative influence of each filler was observed from dimensional stability measurements and structural analysis by WAXD, TEM, and thermal and mechanical properties. At equal filler loadings, PP/clay nanocomposites exhibit an improvement in dimensional stability and were the only composites capable of reduced shrinkage in both in-flow and cross-flow directions. The flexural modulus of PP increased nearly 20% by compounding with 4% organoclay, as compared to a similar performance obtained by compounding with 10 wt.-% of CaCO3 or approximately 6 wt.-% of glass fiber. The HDT and thermal stability of PP were enhanced by using nanoclay as filler. [source] Poly(L -lactide) Nano- and Microfibers by Electrospinning: Influence of Poly(L -lactide) Molecular WeightMACROMOLECULAR SYMPOSIA, Issue 1 2008Waclaw Tomaszewski Abstract Summary: The electrospinning technique based on single and multi-jet systems was applied for poly(L -lactide) (PLA) nano- and microfibers as well as fibrous mats manufacture; the latter with dimensions suitable for the tensile tests. The PLA's employed were prepared by the controlled ring-opening polymerization of the L,L -lactide (LA) monomer. The resulting fibers thickness was correlated with molecular weights of PLA's and viscosities of spinning solutions. The scanning electron microscopic, thermal, and tensile characteristics of the polymeric materials and fibrous mats were also examined. [source] Preface: phys. stat. sol. (c) 1/10PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 10 2004Eun-Kyung Suh The Fifth International Symposium on Blue Laser and Light Emitting Diodes (ISBLLED-2004) was held in Gyeongju, Korea from 15,19 March 2004. Gyeongju, the ancient capital of the thousand-year Silla kingdom (57 B.C. to 935 A.D.) provided additional pleasure to the participants as an exceptional open-air museum with antique treasures scattered all around the city. During the last decade we have witnessed remarkable developments in wide-gap semiconductors and light emitting devices in the spectral range from the visible to deep UV. The purpose of the Symposium was to provide a forum for intensive discussion on the issues and main progress especially in optoelectronic devices, material growth and characterization, and quantum structures of wide bandgap semiconductors. A total of 243 papers including 220 contributed and 23 invited ones were presented and discussed by 487 participants from 17 countries world-wide. Among them, 154 manuscripts were submitted and reviewed by the usual evaluation process of physica status solidi. Some were rejected or withdrawn, and finally 139 papers are published in the special issues of physica status solidi (a), (b), and (c). We gratefully acknowledge the referees for their careful review. The papers are grouped into 7 categories. The subheadings and the number of papers in each are as follows: Optoelectronic devices, 43; Growth and characterization, 45; Nano and quantum structures, 21; Contacts, 8; Zinc oxide, 9; Indium nitride and indium rich InGaN, 6; Others, 7. The special session of the Symposium, "The LED Highlight", designed partially to meet the challenging targets of the technology, i.e., energy savings and clean environment preservation, drew much attention and is edited as a special coloured section in this issue. The next symposium is scheduled for Montpellier, France, in 2006. We wish the organizers of that symposium the best of luck and hope to see all of the ISBLLED-2004 participants again at ISBLLED-2006. ISBLLED-2004 was sponsored by The Research Society for the Wide-gap Semiconductors, Korean Physical Society, Office of Naval Research, Korea Science and Engineering Foundation, Korea Research Foundation, Korea Association for Photonics Industry Development, Asian Office of Aerospace Research and Development, and Korea Photonics Technology Institute. We would like to thank Ms. E. S. Hwang for her devotion to the preparation and the Proceedings of the symposium including the manuscript handling for publication. [source] Supersensitive Detection of Explosives by Silicon Nanowire Arrays,ANGEWANDTE CHEMIE, Issue 38 2010Yoni Engel Chip als Spürnase: Empfindlicher denn je lassen sich Explosivstoffe mit Siliciumnanodraht-Feldeffekttransistor-Sensoranordnungen nachweisen, die mit Monoschichten eines elektronenreichen Aminosilans modifiziert sind und Komplexe mit den Analyten bilden (siehe Bild). Diese Nano-,Spürnasen" bemerken TNT-Konzentrationen von nur 1×10,6,ppt und sind somit Spürhunden und allen anderen bekannten Nachweismethoden für Explosivstoffe überlegen. [source] Monodisperse Yolk,Shell Nanoparticles with a Hierarchical Porous Structure for Delivery Vehicles and Nanoreactors,ANGEWANDTE CHEMIE, Issue 29 2010Jian Liu Dr. Nano-,Eier": Bei einer allgemeinen Templatstrategie für die Herstellung hohler Nanokügelchen mit beweglichen Kernen (,yolk,shell structures", rechts im Bild) aus Gold, SiO2 oder magnetischem Fe3O4 wird der Kern zunächst von einem Fluorkohlenstofftensid überzogen, das das Vesikeltemplat für die Schale darstellt. [source] Quantitative Measurement of Nano-/Microparticle Endocytosis by Cell Mass Spectrometry,ANGEWANDTE CHEMIE, Issue 20 2010Huan-Chang Lin Vollzählig angetreten? Massenspektrometrie an Zellen wurde angewendet, um zu bestimmen, wie viele Gold- und Polystyrol-Nano-/Mikropartikel aufgenommen werden (siehe Bild). Die Menge an Goldnanopartikeln war ähnlich wie bei massenspektrometrischen Messungen mit induktiv gekoppeltem Plasma , eine Technik, die sich nicht zur Analyse der Aufnahme nichtmetallischer Partikel in Zellen eignet. [source] Innentitelbild: Nano-to-Macroscale Poly(methyl methacrylate) Stereocomplex Assemblies (Angew. Chem.ANGEWANDTE CHEMIE, Issue 46 200946/2009) Komplementäre Stränge von stereoregulärem Poly(methylmethacrylat) (PMMA) können Stereokomplexe in Form dreisträngiger Helices bilden. In ihrer Zuschrift auf S.,8863,ff. präsentieren G.,G. Qiao, M. Kamigaito et,al. eine faszinierende Sammlung von Morphologien, die aus einem einzigen Satz komplementärer PMMA-Polymere erzeugt wurden. Nano- bis makroskopische Aggregate wurden dabei einfach durch Verändern der Mischungsverhältnisse und Konzentrationen erhalten. [source] ChemInform Abstract: Synthesis and Characterization of Fluorescent Polyoxometalate Nano-/Microrods.CHEMINFORM, Issue 31 2010Yan Shen Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Growth of Nano- and Microstructured Indium Nitride Crystals by the Reaction of Indium Oxide with Ammonia.CHEMINFORM, Issue 52 2005Woo-Sik Jung Abstract For Abstract see ChemInform Abstract in Full Text. [source] Theoretical Trends of Diffusion and Reaction into Tubular Nano- and Mesoporous Structures: General Physicochemical and Physicomathematical ModelingCHEMISTRY - A EUROPEAN JOURNAL, Issue 18 2008Christian Amatore Prof. Abstract A general and adaptable physicochemical model is presented to evaluate the mass transport within nanopores of mesoporous particles when the mass transport is coupled to heterogeneous kinetics occurring at active sites located onto the nanopore walls surface. The model framework encompasses almost all situations of practical interest in solutions and may be used for characterizing the kinetic rates and constants controlling the system under different sets of experimental conditions. Furthermore, it allows the delineation of simple effective parameters, which should be most useful for optimizing a given material in view of specific applications. For the sake of clarification the simplified model is presented and its results discussed by specializing it for cases where the reactions involve a simple adsorption of a target species on the nanopore immobilized sites as observed for inorganic sponges used in water decontamination. Yet it may easily be extended further to encompass a wider variety of situations where the sites immobilized onto the nanopore walls perform chemical or biochemical transformations as occur in supported catalysis in liquid solution. [source] Accumulation and filtering of nanoparticles in microchannels using electrohydrodynamically induced vortical flowsELECTROPHORESIS, Issue 14 2008Maika Felten Abstract We present an approach for the accumulation and filtering of nano- and microparticles in microfluidic devices that is based on the generation of electric traveling waves in the radio-frequency range. Upon application of the electric field via a microelectrode array, complex particle trajectories and particle accumulation are observed in well-defined regions in a microchannel. Through the quantitative mapping of the 3-D flow pattern using two-focus fluorescence cross-correlation spectroscopy, two vortices could be identified as one of the sources of the force field that induces the formation of particle clouds. Dielectrophoretic forces that directly act on the particles are the second source of the force field. A thorough 2-D finite element analysis identifies the electric traveling wave mechanism as the cause for the unexpected flow behavior observed. Based on these findings, strategies are discussed, first, for avoiding the vortices to optimize electrohydrodynamic micropumps and, secondly, for utilizing the vortices in the development of microdevices for efficient particle accumulation, separation, and filtering. Such devices may find numerous biomedical applications when highly diluted nano- and microsuspensions have to be processed. [source] A novel microstep device for the size separation of cellsELECTROPHORESIS, Issue 10-11 2004Sarah Vankrunkelsven Abstract We report on a series of preliminary experiments investigating the applicability of a novel method for the size separation of nano- and microsized particles and cells. The working principle is based on the application of a shear-driven flow through stepwise tapered micro- or nanochannels. Size separations of mixtures of 0.5 and 1.0 ,m carboxylated polystyrene beads as well as of binary mixtures of Staphylococcus aureus and Saccharomycescerevisiae cells and of S. cerevisiae and Escherichia coli cells are demonstrated. [source] Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetidaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2010Jessica G. Coleman Abstract Nano-sized aluminum is currently being used by the military and commercial industries in many applications including coatings, thermites, and propellants. Due to the potential for wide dispersal in soil systems, we chose to investigate the fate and effects of nano-sized aluminum oxide (Al2O3), the oxidized form of nano aluminum, in a terrestrial organism. The toxicity and bioaccumulation potential of micron-sized (50,200,µm, nominal) and nano-sized (11,nm, nominal) Al2O3 was comparatively assessed through acute and subchronic bioassays using the terrestrial earthworm, Eisenia fetida. Subchronic (28-d) studies were performed exposing E. fetida to nano- and micron-sized Al2O3 -spiked soils to assess the effects of long-term exposure. No mortality occurred in subchronic exposures, although reproduction decreased at ,3,000,mg/kg nano-sized Al2O3 treatments, with higher aluminum body burdens observed at 100 and 300,mg/kg; no reproductive effects were observed in the micron-sized Al2O3 treatments. In addition to toxicity and bioaccumulation bioassays, an acute (48-h) behavioral bioassay was conducted utilizing a soil avoidance wheel in which E. fetida were given a choice of habitat between control, nano-, or micron-sized Al2O3 amended soils. In the soil avoidance bioassays, E. fetida exhibited avoidance behavior toward the highest concentrations of micron- and nano-sized Al2O3 (>5,000,mg/kg) relative to control soils. Results of the present study indicate that nano-sized Al2O3 may impact reproduction and behavior of E. fetida, although at high levels unlikely to be found in the environment. Environ. Toxicol. Chem. 2010;29:1575,1580. © 2010 SETAC [source] Ultra-Fast Atomic Transport in Severely Deformed Materials,A Pathway to Applications?,ADVANCED ENGINEERING MATERIALS, Issue 8 2010Sergiy Divinski Abstract Severe plastic deformation of pure Cu and Cu-rich alloys was found to create a hierarchical combination of fast and ultra-fast diffusion paths ranging from non-equilibrium grain boundaries to non-equilibrium triple junctions, vacancy clusters, nano- and micro-pores, and finally to general high-angle grain boundaries. Under certain conditions, a percolating network of porosity can be introduced in the ultra-fine grained materials by a proper mechanical and thermal treatment. This network may offer promising opportunities for creating materials with tailor-made properties, including combinations of improved mechanical performance with a possibility of self repair using "vascular structures" for atom transport. Applications in such areas as drug eluting bioimplants and lead or polymer eluting materials for reduction of friction based on impregnation of porosity networks with these agents are also envisaged. [source] Size Independent Shape Memory Behavior of Nickel,Titanium,ADVANCED ENGINEERING MATERIALS, Issue 8 2010Blythe G. Clark While shape memory alloys such as NiTi have strong potential as active materials in many small-scale applications, much is still unknown about their shape memory and deformation behavior as size scale is reduced. This paper reports on two sets of experiments which shed light onto an inconsistent body of research regarding the behavior of NiTi at the nano- to microscale. In situ SEM pillar bending experiments directly show that the shape memory behavior of NiTi is still present for pillar diameters as small as 200,nm. Uniaxial pillar compression experiments demonstrate that plasticity of the phase transformation in NiTi is size independent and, in contrast to bulk single crystal observations, is not influenced by heat treatment (i.e., precipitate structure). [source] Dynamic Magnetic Properties of Ferroic Films, Multilayers, and Patterned ElementsADVANCED FUNCTIONAL MATERIALS, Issue 15 2010Robert L. Stamps Abstract Modification and control of material properties through careful manipulation of geometry on nano- and sub-nanometer length scales is a cornerstone of modern materials science and technology. An exciting area in which these concepts have provided exceptional advances has been magnetoelectronics and nanomagnetism. Important scales in magnetic metals are conduction spin diffusion lengths and distances over which local moments correlate. Advanced techniques now allow for the creation of structures patterned on these length scales in three dimensions. The focus of this article is on magnetic structures whose dynamic properties can be strongly modified by ion bombardment and lithographic patterning. Examples are given of how microwave frequency properties can be tuned with external fields, how factors controlling magnetic switching can be controlled, and how manipulation of magnetic domain walls can be used to reveal new and surprising phenomena. [source] Large-Area Nanoscale Patterning of Functional Materials by Nanomolding in CapillariesADVANCED FUNCTIONAL MATERIALS, Issue 15 2010Xuexin Duan Abstract Within the past years there has been much effort in developing and improving new techniques for the nanoscale patterning of functional materials used in promising applications like nano(opto)electronics. Here a high-resolution soft lithography technique,nanomolding in capillaries (NAMIC),is demonstrated. Composite PDMS stamps with sub-100,nm features are fabricated by nanoimprint lithography to yield nanomolds for NAMIC. NAMIC is used to pattern different functional materials such as fluorescent dyes, proteins, nanoparticles, thermoplastic polymers, and conductive polymers at the nanometer scale over large areas. These results show that NAMIC is a simple, versatile, low-cost, and high-throughput nanopatterning tool. [source] COST action 921: food matrices: structural organization from nano- to macro scale and impact on flavour release and perceptionFLAVOUR AND FRAGRANCE JOURNAL, Issue 1 2006Béatrice Conde-Petit No abstract is available for this article. [source] |