Home About us Contact | |||
Naïve Animals (naive + animals)
Selected AbstractsEffects of repeated injections of fibroblast-stimulating lipopeptide-1 on fever, formation of cytokines, and on the responsiveness to endotoxin in guinea-pigsACTA PHYSIOLOGICA, Issue 1 2009A. Greis Abstract Aims:, We investigated, whether the Toll-like receptors (TLRs)-2/6-agonist fibroblast-stimulating lipopeptide-1 (FSL-1), like the TLR-4 agonist lipopolysaccharide (LPS), induces a state of tolerance. We further tested the influence of repeated pre-treatment with FSL-1 on the animals' responsiveness to LPS. Methods:, Abdominal temperature was recorded in unrestrained guinea-pigs with intra-abdominally implanted radiotransmitters. Circulating concentrations of tumour necrosis factor (TNF) and interleukin-6 (IL-6) were measured with specific bioassays. We tested the effects of intra-arterial (i.a.) or intraperitoneal (i.p.) injections of 100 ,g kg,1 FSL-1, repeated five times at intervals of 3 days. The animals' responses to i.a. or i.p. injections of 10 ,g kg,1 LPS were determined another 3 days later and compared to those of naïve guinea-pigs. Results:, The FSL-1-induced TNF peak was significantly attenuated starting with the third i.a. administration, while fever was unimpaired and the IL-6-peak just tended to decrease. Fever and IL-6 in response to i.a. injections of LPS were identical in both groups, while circulating TNF was higher in naïve compared to FSL-1 pre-treated animals. The effects of repeated i.p. injections of FSL-1 were more pronounced resulting in attenuation of fever as well as circulating TNF and IL-6, the strongest reduction observed after the third stimulation with FSL-1. Repeated i.p. pre-treatment with FSL-1 induced hyporesponsiveness to i.p. administration of LPS compared to naïve animals with regard to fever and especially with regard to LPS-induced formation of cytokines. Conclusions:, There is a development of tolerance to FSL-1 and cross-tolerance between FSL-1 and LPS depending on the route of administration of the respective TLR-2/6 and TLR-4 agonists. [source] Polyvalent DNA prime and envelope protein boost HIV-1 vaccine elicits humoral and cellular responses and controls plasma viremia in rhesus macaques following rectal challenge with an R5 SHIV isolateJOURNAL OF MEDICAL PRIMATOLOGY, Issue 5-6 2005Ranajit Pal Abstract:, Immunization of macaques with multivalent DNA encoding gp120 genes from HIV-1 subtypes A, B, C and E and a gag gene followed by boosting with homologous gp120 proteins elicited strong anti-gp120 antibodies capable of neutralizing homologous and to a lesser degree heterologous HIV-1 isolates. Both Env- and Gag-specific cell mediated immune (CMI) responses were detected in the immunized animals. Following rectal challenge with an SHIV isolate encoding HIV-1Ba-Lenv, plasma viremia in the infected immunized animals was significantly lower than that observed in the naïve animals. Further, one of six immunized animals was completely protected whereas all six naïve animals were infected. These results demonstrate that a vaccine based on priming with a polyvalent DNA vaccine from multiple HIV-1 subtypes followed by boosting with homologous Env proteins elicits anti-HIV-1 immune responses capable of controlling rectal transmission of SHIVBa-L. [source] The Interaction of Gestational and Postnatal Ethanol Experience on the Adolescent and Adult Odor-Mediated Responses to Ethanol in Observer and Demonstrator RatsALCOHOLISM, Issue 10 2010Amber M. Eade Background:, Gestational ethanol exposure enhances the adolescent reflexive sniffing response to ethanol odor. Postnatal exposures of naïve animals as either an observer (i.e., conspecific) or demonstrator (i.e., intoxicated peer) using a social transmission of food odor preference paradigm also yields enhanced odor-mediated responses. Studies on the interaction of fetal and postnatal exposures using the social transmission paradigm have been limited to the responses of observers. When combined, the enhanced response is greater than either form of exposure alone and, in observer females, yields adult persistence. The absence of a male effect is noteworthy, given that chemosensory mechanisms are suggested to be an important antecedent factor in the progression of ethanol preference. Observers gain odor information on the breath of the demonstrator through social interaction. Demonstrators experience the pharmacologic properties of ethanol along with retronasal and hematogenic olfaction. Thus, we tested whether augmentation of the fetal ethanol-induced behavioral response with postnatal exposure as a demonstrator differed from that as an observer. We also examined whether re-exposure as a demonstrator yields persistence in both sexes. Methods:, Pregnant dams were fed an ethanol containing or control liquid diet throughout gestation. Progeny received four ethanol or water exposures: one every 48 hours through either intragastric infusion or social interaction with the infused peer beginning on P29. The reflexive behavioral sniffing response to ethanol odor was tested at postnatal (P) day 37 or P90, using whole-body plethysmography. Results:, When tested in either adolescence or adulthood - fetal ethanol exposed adolescent ethanol observers and demonstrators significantly differed in their odor-mediated response to ethanol odor both between themselves and from their respective water controls. Nonetheless, adolescent ethanol re-exposure as a demonstrator, like an observer, enhanced the reflexive sniffing response to ethanol odor at both testing ages by augmenting the known effects of prior fetal ethanol experience. At each age, the magnitude of the enhanced odor response in demonstrators was similar to that of observers. Interestingly, only re-exposure as a demonstrator resulted in persistence of the behavioral response into adulthood in both sexes. Conclusions:, The method of ethanol re-exposure plays an important role in prolonging the odor-mediated effects of fetal exposure. While ethanol odor-specific exposure through social interaction is important, additional factors such as the pairing of retronasal and hematogenic olfaction with ethanol's intoxicating properties appear necessary to achieve persistence in both sexes. [source] Linaclotide , a secretagogue and antihyperalgesic agent , what next?NEUROGASTROENTEROLOGY & MOTILITY, Issue 3 2010A. E. Bharucha Abstract Ongoing clinical trials suggest that linaclotide, a first-in-class, 14-amino acid peptide guanylate cyclase-C (GC-C) receptor agonist and intestinal secretagogue is an effective treatment for chronic constipation. A study in this issue of the Journal suggests that linaclotide also has antihyperalgesic effects in three common rat models of inflammation- and stress-induced hypersensitivity (i.e., acute trinitrobenzene sulfonic acid colitis, water avoidance stress [WAS], and restraint-induced stress) but not in naïve animals. In mice, linaclotide at least partly reduces hyperalgesia via GC-C receptors. Dose,effect relationships of linaclotide were complicated and non-linear. This viewpoint discusses human clinical trials with linaclotide and the results of this study. Potential mechanisms and clinical significance of these findings are explored. Collectively, these data suggest that GC-C receptors exert other, as yet poorly understood, effects on gastrointestinal sensitivity in conditions associated with inflammation and/or stress-induced increased intestinal permeability. However, the data need to be confirmed in humans and in long-term animal models. Further studies are also necessary to elucidate the mechanisms as these effects cannot be explained by linaclotide's known effects on epithelial GC-C receptors. [source] ,-Opioid Receptor Redistribution in the Locus Coeruleus Upon Precipitation of Withdrawal in Opiate-Dependent RatsTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 3 2009Jillian L. Scavone Abstract Administration of ,-opioid receptor (MOR) agonists is known to produce adaptive changes within noradrenergic neurons of the rat locus coeruleus (LC). Alterations in the subcellular distribution of MOR have been shown to occur in the LC in response to full agonists and endogenous peptides; however, there is considerable debate in the literature whether trafficking of MOR occurs after chronic exposure to the partial-agonist morphine. In the present study, we examined adaptations in MOR after chronic opioid exposure using immunofluorescence and electron microscopy (EM), using receptor internalization as a functional endpoint. MOR trafficking in LC neurons was characterized in morphine-dependent rats that were given naltrexone at a dose known to precipitate withdrawal. After chronic morphine exposure, a subtle redistribution of MOR immunoreactivity from the membrane to the cytosol was detected within dendrites of LC neurons. Interestingly, an acute injection of naltrexone in rats exposed to chronic morphine produced a robust internalization of MOR, whereas administration of naltrexone failed to do so in naïve animals. These findings provide anatomical evidence for modified regulation of MOR trafficking after chronic morphine treatment in brain noradrenergic neurons. Adaptations in the MOR signaling pathways that regulate internalization may occur as a consequence of chronic treatment and precipitation of withdrawal. Mechanisms underlying this effect might include differential MOR regulation in the LC, or downstream effects of withdrawal-induced enkephalin (ENK) release from afferents to the LC. Anat Rec, 292:401,411, 2009. © 2009 Wiley-Liss, Inc. [source] Effect of immunostimulants on the haemolymph haemagglutinins of tiger shrimp Penaeus monodonAQUACULTURE RESEARCH, Issue 12 2008Roshan Pais Abstract The levels of haemagglutinins in Penaeus monodon, following administration of immunostimulants, ,-glucans and/or vibrio bacterin either orally or by immersion, were studied. The freshly drawn haemolymph was incubated with microbial materials like ,-glucans/vibrio bacterin and serum obtained after coagulation was administered to naïve animals. The immunostimulant treatments either via immersion, feeding or injection were found to cause an increase (P<0.006) in haemagglutination activity (HA) of the haemolymph against mouse erythrocytes. Injection of saline or heterologous haemolymph caused an increase in the HA, but injection of haemolymph serum obtained by clotting haemolymph in the presence of vibrio bacterin or glucan did not bring about an increase in HA. There was no change in the haemolymph protein profile of the groups receiving immunostimulants through immersion or feed. Two protein bands (27 and 30 kDa), which were present in the uninjected group, were found to be overexpressed in the haemolymph-injected groups. Three bands of 17, 21 and 23 kDa, which were absent in control or saline-injected groups, were present in all the haemolymph serum-injected groups. The study indicates that modulation of HA may partly account for the immunomodulatory activity of immunostimulants like ,-glucan or vibrio bacterins. [source] Tolerance develops in spinal cord, but not in brain with chronic [Dmt1]DALDA treatmentBRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2004Yong Ben Previously, we reported that H-2,,6,-dimethyltyrosine [Dmt1]- D -Arg-Phe-Lys-NH2 (DALDA), an analogue of the naturally occurring opioid peptide dermorphin, is a highly potent and selective mu receptor agonist with low cross-tolerance to morphine. In the present study, we investigated the effect of treating mice chronically with [Dmt1]DALDA. The AD50 of [Dmt1]DALDA (s.c.) increased eight-fold in animals given this drug chronically; in contrast, the AD50 increased two-fold in mice chronically treated with morphine. The AD50 of morphine (s.c.) in these [Dmt1]DALDA-treated animals was increased more than 120 times, while that of the more selective , agonist [D -Ala2 -MePhe4 -Gly-ol5]enkephalin (DAMGO) given intrathecally was increased more than 240 times. However, the AD50 of DAMGO given intracerebroventricularly was essentially the same in animals treated chronically with [Dmt1]DALDA as in naïve animals. The dose of naloxone required to precipitate withdrawal in [Dmt1]DALDA-treated animals was 20 times lower than that in morphine-tolerant animals. Using real-time quantitative PCR, we found that expression of the , opioid receptor, , opioid receptor, preproenkephalin and preprodynorphin genes was upregulated in the brain by [Dmt1]DALDA treatment. No significant changes in expression of opioid receptor or opioid peptide genes were detected in the spinal cord of [Dmt1]DALDA-treated mice, nor in the brain or spinal cord of morphine-treated mice. We conclude that a high degree of tolerance to [Dmt1]DALDA develops in the spinal cord but not brain, and cannot be accounted for by changes in expression of opioid receptors or opioid peptides in these tissues. British Journal of Pharmacology (2004) 143, 987,993. doi:10.1038/sj.bjp.0706007 [source] |