Na+/H+ Exchanger Regulatory Factor (na+/h+ + exchanger_regulatory_factor)

Distribution by Scientific Domains


Selected Abstracts


THE EPITHELIAL BRUSH BORDER Na+/H+ EXCHANGER NHE3 ASSOCIATES WITH THE ACTIN CYTOSKELETON BY BINDING TO EZRIN DIRECTLY AND VIA PDZ DOMAIN-CONTAINING Na+/H+ EXCHANGER REGULATORY FACTOR (NHERF) PROTEINS

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 8 2008
Boyoung Cha
SUMMARY 1The Na+/H+ exchanger NHE3 associates with the actin cytoskeleton by binding ezrin both directly and indirectly. Both types of interaction are necessary for acute regulation of NHE3. Most acute regulation of NHE3 occurs by changes in trafficking via effects on exocytosis and/or endocytosis. However, NHE3 activity can also be regulated without changing the surface expression of NHE3 (change in turnover number). 2A positive amino acid cluster in the a-helical juxtamembrane region in the COOH-terminus of NHE3 (amino acids K516, R520 and R527) is necessary for binding to the protein 4.1, ezrin, radixin, moesin (FERM) domain III of ezrin. Direct binding of NHE3 to ezrin is necessary for many aspects of basal trafficking, including basal exocytosis, delivery from the synthetic pathway and movement of NHE3 in the brush border (BB), which probably contributes to endocytosis over a prolonged period of time. 3In addition, NHE3 binds indirectly to ezrin. The PDZ domain-containing proteins Na+/H+ exchanger regulatory factor (NHERF) 1 and NHERF2, as intermediates in linking NHE3 to ezrin, are necessary for many aspects of NHE3 regulation. The binding of NHERF,ezrin/radixin/moesin to NHE3 occurs in the cytosolic domain of NHE3 between amino acids 475 and 689. This NHERF binding is involved in the formation of the NHE3 complex and restricts NHE3 mobility in the BB. However, it is dynamic; for example, changing in some cases of signalling. Furthermore, NHERF binding is necessary for lysophosphatidic acid stimulation of NHE3 and inhibition of NHE3 by Ca2+, cAMP and cGMP. [source]


Biological role of NHERF1 protein expression in breast cancer

HISTOPATHOLOGY, Issue 5 2009
Anita Mangia
Aims:, To determine the role of Na+/H+ exchanger regulatory factor (NHERF1) in breast cancerogenesis and progression. Methods and results:, NHERF1 expression was examined in normal tissue, ductal carcinoma in situ (DCIS), invasive carcinoma (IBC), synchronous metastatic lymph node and metachronous distant metastases of a retrospective series of breast cancers. Fifty-one IBC, 42 DCIS and normal tissues were examined immunohistochemically, and the colocalization between NHERF1 and HER2/neu was studied by immunofluorescence. NHERF1 showed a different localization and pattern of expression in the different compartments of the breast. The mean value of cytoplasmic NHERF1 expression in paired samples was significantly higher in DCIS, IBC, distant metastases and metastatic lymph nodes with respect to normal tissues. Moreover, in metastatic lymph nodes NHERF1 was exclusively cytoplasmic. In the membrane NHERF1 was colocalized with overexpressed HER2/neu in DCIS, IBC and distant metastases. Conclusions:, Breast cancerogenesis is characterized by increased cytoplasmic expression of NHERF1 as the tumour progresses, suggesting a role in this process. The switch from apical membranous to cytoplasmic expression is compatible with a dual role for NHERF1 as a tumour suppressor or tumour promoter dependent on its subcellular localization. [source]


The enteropathogenic Escherichia coli type III secretion system effector Map binds EBP50/NHERF1: implication for cell signalling and diarrhoea

MOLECULAR MICROBIOLOGY, Issue 2 2006
Nandi Simpson
Summary Enteropathogenic Escherichia coli (EPEC) is the single most important contributor to child diarrhoea in developing countries. Nevertheless, the mechanism responsible for EPEC diarrhoea remains elusive. Using the yeast two-hybrid system to determine the target host cell protein of the EPEC type III secretion system effector Map led to identification of ezrin/radixin/moesin (ERM)-binding phosphoprotein 50 (EBP50), also known as Na+/H+ exchanger regulatory factor 1 (NHERF1). Protein interaction is mediated by the carboxy-terminal Thr-Arg-Leu (TRL) motif of Map and the PSD-95/Disk-large/ZO-1 domain 1 (PDZ1) of EBP50/NHERF1. Although EBP50/NHERF1 is recruited to site of EPEC adhesion in a Map-independent mechanism, co-immunoprecipitation and immunostaining revealed that Map binds to, induces proteolysis of, and colocalizes with EBP50/NHERF1 during infection of cultured epithelial cells. The TRL motif of Map was involved in Map-induced filopodia formation and brush border elongation on infected HeLa and Caco-2 cells respectively. As EBP50/NHERF1 regulates ion channels in the intestine we assessed the involvement of Map in diarrhoea using the Citrobacter rodentium mouse model of EPEC. We report significantly greater diarrhoea following infections with wild-type C. rodentium compared with C. rodentium,map. These results provide new insights into the mechanisms of EPEC diarrhoea. [source]


Crystallographic characterization of the PDZ1 domain of the human Na+/H+ exchanger regulatory factor

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 5 2001
Gordon Webster
The Na+/H+ exchanger regulatory factor (NHERF) contains two PDZ domains that mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. The human NHERF PDZ1 domain, which spans residues 11,99, interacts specifically with carboxy-terminal residues of the ,2 adrenergic receptor and the cystic fibrosis transmembrane conductance regulator. The NHERF PDZ1 was expressed in Escherichia coli as a soluble protein, purified and crystallized in the unbound form using the vapor-diffusion method with 2,M ammonium sulfate as the precipitant. Diffraction data were collected to 1.5,Å resolution using synchrotron radiation. The crystals belong to space group P3121 or P3221, with unit-cell parameters a = b = 51.6, c = 58.9,Å, and one molecule in the asymmetric unit. [source]