NADPH

Distribution by Scientific Domains
Distribution within Chemistry

Terms modified by NADPH

  • nadph oxidase
  • nadph oxidase activation
  • nadph oxidase activity
  • nadph supply

  • Selected Abstracts


    Reduced nicotinamide adenine dinucleotide phosphate and the higher incidence of pollution-induced liver cancer in female flounder

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2003
    Angela Koehler
    Abstract In biological effect monitoring programs, induction of biotransformation and detoxification enzymes is used as a biomarker for pollution. Yet sex differences are usually neglected in the availability of reduction equivalents needed in these metabolic pathways and may affect biomarker responses. For example, female flounder have a threefold higher incidence of macroscopic liver nodules than males of the same age class in polluted environments of the North Sea that progress toward carcinomas, whereas tumors in males virtually never develop into cancer. Evidence is presented in this review that NADPH plays a significant role in this sex-related response to xenobiotics in liver of flounder. The NADPH is needed for biosynthesis, particularly of lipids and lipoproteins, and detoxification processes such as one-electron and two-electron biotransformation and conjugation and, therefore, its availability as substrate determines biomarker responses. Biotransformation of xenobiotics is more strongly induced and conjugation processes are less affected in male flounder liver during exposure. In female liver, NADPH is required for production of the yolk precursor protein vitellogenin for oocyte production. The latter process has a higher priority than the NADPH-requiring detoxification processes because reproductive success is more relevant in evolutionary perspectives than the survival of the individual female. The data reviewed here suggest that these sex-related differences in NADPH metabolism are a major cause of the higher incidence of liver cancer in female flounder in polluted environments. [source]


    Possible mechanisms for the anticonvulsant activity of fructose-1,6-diphosphate

    EPILEPSIA, Issue 2008
    Janet L. Stringer
    Summary Fructose-1,6-diphosphate (FDP), an intracellular metabolite of glucose, has anticonvulsant activity in several models of acute seizures in laboratory animals. The anticonvulsant effect of FDP is most likely due to a direct effect since intraperitoneal and oral administration results in significant increases in brain levels. A number of mechanisms have been proposed for this action of FDP. One possibility is that peripheral administration of FDP results in changes in brain metabolism that are anticonvulsant. Glucose can be metabolized through the glycolytic or pentose phosphate pathway. There is evidence that the pentose phosphate pathway is more active in the brain than in other tissues, and that, in the presence of elevated levels of FDP, the majority of glucose is metabolized by the pentose phosphate pathway. The pentose phosphate pathway generates NADPH, which is used to reduce glutathione. The reduced form of endogenous glutathione has been shown to have anticonvulsant activity. Taken together, the data suggest a hypothesis that exogenously administered FDP gets into the brain and astrocytes where it increases the flux of glucose through the pentose phosphate pathway, generating additional NADPH for the reduction of glutathione. [source]


    Alcohol exposure and paracetamol-induced hepatotoxicity

    ADDICTION BIOLOGY, Issue 2 2002
    STEPHEN M. RIORDAN
    In contrast, serious hepatotoxicity at recommended or near-recommended doses for therapeutic purposes has been reported, mainly from the United States and in association with chronic alcohol use, leading to the widely held belief that chronic alcoholics are predisposed to paracetamol-related toxicity at relatively low doses. Yet the effects of alcohol on paracetamol metabolism are complex. Studies performed in both experimental animals and humans indicate that chronic alcohol use leads to a short-term, two- to threefold increase in hepatic content of cytochrome P4502E1, the major isoform responsible for the generation of the toxic metabolite from paracetamol, although increased oxidative metabolism of paracetamol at recommended doses has not been demonstrated clinically. A reduced hepatic content of glutathione, required to detoxify the reactive metabolite, has been documented in chronic alcoholics, due probably to associated fasting and malnutrition, providing a metabolic basis for any possible predisposition of this group to hepatotoxicity at relatively low paracetamol doses. Simultaneous alcohol and paracetamol ingestion reduces oxidative metabolism of paracetamol in both rodents and humans, predominantly as a consequence of depletion in cytosol of free NADPH. The possibilities that chronic alcohol use may predispose to paracetamol-related hepatotoxicity and that alcohol taken with paracetamol may protect against it, based on these metabolic observations, are examined in this review. [source]


    Absence of phosphoglucose isomerase-1 in retinal photoreceptor, pigment epithelium and Muller cells

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2004
    Simon N. Archer
    Abstract Macroarray analysis was used to compare equal amounts of cDNA from wild-type and rd/rd (retinal degeneration) mice, collected at P90 when photoreceptor degeneration is virtually complete. A stronger signal for the glycolytic enzyme phosphoglucose isomerase (Gpi1) was observed in the rd/rd sample. Extracellularly, Gpi1 may act as a cytokine, independently described as neuroleukin and autocrine motility factor. Retinal Gpi1 expression was investigated by Northern and Western blot analysis and immunohistochemistry. Double-labelling was performed with antibodies against Gpi1 and calbindin-D, glutamine synthetase, RPE65, calretinin and ultraviolet opsin in order to provide positive cell type identification. Northern and Western blots showed double expression levels per microgram of RNA and protein, respectively, in the rd/rd retina compared with wild-type. However, the total amount of Gpi1 protein per retina was indistinguishable. Gpi1 immunoreactivity was found in ganglion, amacrine, horizontal and bipolar cells, but not in rods, cones, pigment epithelium and Muller cells. This distribution explains why the absolute amounts of Gpi1 protein were not appreciably different between wild-type and the rd/rd phenotype, where rods and cones are absent, whilst the relative contribution of Gpi1 to the total protein and RNA pools differed. Some extracellular immunoreactivity was observed in the photoreceptor matrix around cones in freshly fixed tissue only, which could possibly reflect a role as a cytokine. We propose that glycolysis in Gpi1-negative cells proceeds entirely through the pentose phosphate pathway, creating NADPH at the cost of organic carbon. We hypothesize that the unique metabolic needs of photoreceptors justify this trade-off. [source]


    Nitric oxide and thyroid gland: modulation of cardiovascular function in autonomic-blocked anaesthetized rats

    EXPERIMENTAL PHYSIOLOGY, Issue 3 2004
    Andrea Lorena Fellet
    We have previously reported that acute administration of NG -nitro- l -arginine methyl ester (l -NAME) increases the mean arterial pressure (MAP) and heart rate (HR) in autonomic-blocked (CAB) anaesthetized rats. In the present study we examined whether thyroid and adrenal glands are involved in these pressor and chronotropic responses. Sprague-Dawley rats were studied after bilateral vagotomy and ganglionic blockade with hexamethonium (10 mg kg,1), and stabilization of MAP with infusion of phenylephrine (PE) (6 ,g kg,1 min,1). The rats were divided into groups: L, CAB; PE, CAB + PE bolus (6 ,g kg,1); L-TX, thyroidectomy + CAB; L-AX, adrenalectomy + CAB; TX, only thyroidectomy; C, CAB. L, L-AX and L-TX groups received a bolus of l -NAME (7.5 mg kg,1). Triiodothyronine (T3), thyroxin (T4) and thyrotropin (TSH) levels were measured in L and L-TX rats before and after l -NAME administration. Reduced nicotamide adenine dinucleotide (NADPH) diaphorase activity was determined in heart and aorta of the TX group. The pressor response induced by l -NAME was similar in all groups. l -NAME-induced-tachycardia was associated with this rise in MAP. Adrenalectomy did not modify this chronotropic response, but it was attenuated by thyroidectomy. Thyroidectomy by itself decreased the circulating levels of T3 but it had no effect on the plasma levels of T4 and TSH. L and L-TX groups showed similar levels of circulating T4 and TSH, meanwhile the plasma level of T3 decreased in the L group. Nitric oxide synthase (NOS) activity in atria as well as in aorta was greater in the TX group compared with C. When autonomic influences are removed, the thyroid gland modulates intrinsic heart rate via a mechanism that involves, at least in part, the nitric oxide pathway. [source]


    Identification of the N-termini of NADPH : protochlorophyllide oxidoreductase A and B from barley etioplasts (Hordeum vulgare L.)

    FEBS JOURNAL, Issue 4 2009
    Matthias Plöscher
    The N-termini of the NADPH : protochlorophyllide oxidoreductase (POR) proteins A and B from barley and POR from pea were determined by acetylation of the proteins and selective isolation of the N-terminal peptides for mass spectrometry de novo sequence analysis. We show that the cleavage sites between the transit peptides and the three mature POR proteins are homologous. The N-terminus in PORA is V48, that in PORB is A61, and that in POR from pea is E64. For the PORB protein, two additional N-termini were identified as A62 and A63, with decreased signal intensity of the corresponding N-terminal peptides. The results show that the transit peptide of PORA is considerably shorter than previously reported and predicted by ChloroP. A pentapeptide motif that has been characterized as responsible for binding of protochlorophyllide to the transit peptide of PORA [Reinbothe C, Pollmann S, Phetsarath-Faure P, Quigley F, Weisbeek P & Reinbothe S (2008) Plant Physiol148, 694,703] is shown here to be part of the mature PORA protein. [source]


    Thermodynamic characterization of substrate and inhibitor binding to Trypanosoma brucei 6-phosphogluconate dehydrogenase

    FEBS JOURNAL, Issue 24 2007
    Katy Montin
    6-Phosphogluconate dehydrogenase is a potential target for new drugs against African trypanosomiasis. Phosphorylated aldonic acids are strong inhibitors of 6-phosphogluconate dehydrogenase, and 4-phospho- d -erythronate (4PE) and 4-phospho- d -erythronohydroxamate are two of the strongest inhibitors of the Trypanosoma brucei enzyme. Binding of the substrate 6-phospho- d -gluconate (6PG), the inhibitors 5-phospho- d -ribonate (5PR) and 4PE, and the coenzymes NADP, NADPH and NADP analogue 3-amino-pyridine adenine dinucleotide phosphate to 6-phospho- d -gluconate dehydrogenase from T. brucei was studied using isothermal titration calorimetry. Binding of the substrate (Kd = 5 µm) and its analogues (Kd =1.3 µm and Kd = 2.8 µm for 5PR and 4PE, respectively) is entropy driven, whereas binding of the coenzymes is enthalpy driven. Oxidized coenzyme and its analogue, but not reduced coenzyme, display a half-site reactivity in the ternary complex with the substrate or inhibitors. Binding of 6PG and 5PR poorly affects the dissociation constant of the coenzymes, whereas binding of 4PE decreases the dissociation constant of the coenzymes by two orders of magnitude. In a similar manner, the Kd value of 4PE decreases by two orders of magnitude in the presence of the coenzymes. The results suggest that 5PR acts as a substrate analogue, whereas 4PE mimics the transition state of dehydrogenation. The stronger affinity of 4PE is interpreted on the basis of the mechanism of the enzyme, suggesting that the inhibitor forces the catalytic lysine 185 into the protonated state. [source]


    Substrate and inhibitor specificity of Mycobacterium avium dihydrofolate reductase

    FEBS JOURNAL, Issue 13 2007
    Ronnie A. Böck
    Dihydrofolate reductase (EC 1.5.1.3) is a key enzyme in the folate biosynthetic pathway. Information regarding key residues in the dihydrofolate-binding site of Mycobacterium avium dihydrofolate reductase is lacking. On the basis of previous information, Asp31 and Leu32 were selected as residues that are potentially important in interactions with dihydrofolate and antifolates (e.g. trimethoprim), respectively. Asp31 and Leu32 were modified by site-directed mutagenesis, giving the mutants D31A, D31E, D31Q, D31N and D31L, and L32A, L32F and L32D. Mutated proteins were expressed in Escherichia coli BL21(DE3)pLysS and purified using His-Bind resin; functionality was assessed in comparison with the recombinant wild type by a standard enzyme assay, and growth complementation and kinetic parameters were evaluated. All Asp31 substitutions affected enzyme function; D31E, D31Q and D31N reduced activity by 80,90%, and D31A and D31L by >,90%. All D31 mutants had modified kinetics, ranging from three-fold (D31N) to 283-fold (D31L) increases in Km for dihydrofolate, and 12-fold (D31N) to 223 077-fold (D31L) decreases in kcat/Km. Of the Leu32 substitutions, only L32D caused reduced enzyme activity (67%) and kinetic differences from the wild type (seven-fold increase in Km; 21-fold decrease in kcat/Km). Only minor variations in the Km for NADPH were observed for all substitutions. Whereas the L32F mutant retained similar trimethoprim affinity as the wild type, the L32A mutation resulted in a 12-fold decrease in affinity and the L32D mutation resulted in a seven-fold increase in affinity for trimethoprim. These findings support the hypotheses that Asp31 plays a functional role in binding of the substrate and Leu32 plays a functional role in binding of trimethoprim. [source]


    Simulation study of methemoglobin reduction in erythrocytes

    FEBS JOURNAL, Issue 6 2007
    Differential contributions of two pathways to tolerance to oxidative stress
    Methemoglobin (metHb), an oxidized form of hemoglobin, is unable to bind and carry oxygen. Erythrocytes are continuously subjected to oxidative stress and nitrite exposure, which results in the spontaneous formation of metHb. To avoid the accumulation of metHb, reductive pathways mediated by cytochrome b5 or flavin, coupled with NADH-dependent or NADPH-dependent metHb reductases, respectively, keep the level of metHb in erythrocytes at less than 1% of the total hemoglobin under normal conditions. In this work, a mathematical model has been developed to quantitatively assess the relative contributions of the two major metHb-reducing pathways, taking into consideration the supply of NADH and NADPH from central energy metabolism. The results of the simulation experiments suggest that these pathways have different roles in the reduction of metHb; one has a high response rate to hemoglobin oxidation with a limited reducing flux, and the other has a low response rate with a high capacity flux. On the basis of the results of our model, under normal oxidative conditions, the NADPH-dependent system, the physiological role of which to date has been unclear, is predicted to be responsible for most of the reduction of metHb. In contrast, the cytochrome b5,NADH pathway becomes dominant under conditions of excess metHb accumulation, only after the capacity of the flavin,NADPH pathway has reached its limit. We discuss the potential implications of a system designed with two metHb-reducing pathways in human erythrocytes. [source]


    Kinetics of electron transfer from NADH to the Escherichia coli nitric oxide reductase flavorubredoxin

    FEBS JOURNAL, Issue 3 2007
    João B. Vicente
    Escherichia coli flavorubredoxin (FlRd) belongs to the family of flavodiiron proteins (FDPs), microbial enzymes that are expressed to scavenge nitric oxide (NO) under anaerobic conditions. To degrade NO, FlRd has to be reduced by NADH via the FAD-binding protein flavorubredoxin reductase, thus the kinetics of electron transfer along this pathway was investigated by stopped-flow absorption spectroscopy. We found that NADH, but not NADPH, quickly reduces the FlRd-reductase (k = 5.5 ± 2.2 × 106 m,1·s,1 at 5 °C), with a limiting rate of 255 ± 17 s,1. The reductase in turn quickly reduces the rubredoxin (Rd) center of FlRd, as assessed at 5 °C working with the native FlRd enzyme (k = 2.4 ± 0.1 × 106 m,1·s,1) and with its isolated Rd-domain (k , 1 × 107 m,1·s,1); in both cases the reaction was found to be dependent on pH and ionic strength. In FlRd the fast reduction of the Rd center occurs synchronously with the formation of flavin mononucleotide semiquinone. Our data provide evidence that (a) FlRd-reductase rapidly shuttles electrons between NADH and FlRd, a prerequisite for NO reduction in this detoxification pathway, and (b) the electron accepting site in FlRd, the Rd center, is in very fast redox equilibrium with the flavin mononucleotide. [source]


    Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana

    FEBS JOURNAL, Issue 24 2006
    Aqib Iqbal
    Arabidopsis thaliana contains eight glutathione peroxidase (GPX) homologs (AtGPX1,8). Four mature GPX isoenzymes with different subcellular distributions, AtGPX1, -2, -5 and -6, were overexpressed in Escherichia coli and characterized. Interestingly, these recombinant proteins were able to reduce H2O2, cumene hydroperoxide, phosphatidylcholine and linoleic acid hydroperoxides using thioredoxin but not glutathione or NADPH as an electron donor. The reduction activities of the recombinant proteins with H2O2 were 2,7 times higher than those with cumene hydroperoxide. Km values for thioredoxin and H2O2 were 2.2,4.0 and 14.0,25.4 µm, respectively. These finding suggest that GPX isoenzymes may function to detoxify H2O2 and organic hydroperoxides using thioredoxin in vivo and may also be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP balance. [source]


    Isoprenoid biosynthesis in plants , 2C -methyl- d -erythritol-4-phosphate synthase (IspC protein) of Arabidopsis thaliana

    FEBS JOURNAL, Issue 19 2006
    Felix Rohdich
    The ispC gene of Arabidopsis thaliana was expressed in pseudomature form without the putative plastid-targeting sequence in a recombinant Escherichia coli strain. The recombinant protein was purified by affinity chromatography and was shown to catalyze the formation of 2C -methyl- d -erythritol 4-phosphate from 1-deoxy- d -xylulose 5-phosphate at a rate of 5.6 µmol·min,1·mg,1 (kcat 4.4 s,1). The Michaelis constants for 1-deoxy- d -xylulose 5-phosphate and the cosubstrate NADPH are 132 and 30 µm, respectively. The enzyme has an absolute requirement for divalent metal ions, preferably Mn2+ and Mg2+, and is inhibited by fosmidomycin with a Ki of 85 nm. The pH optimum is 8.0. NADH can substitute for NADPH, albeit at a low rate (14% as compared to NADPH). The enzyme catalyzes the reverse reaction at a rate of 2.1 µmol·min -1·mg -1. [source]


    Inhibition of pea ferredoxin,NADP(H) reductase by Zn-ferrocyanide

    FEBS JOURNAL, Issue 22 2004
    Daniela L. Catalano Dupuy
    Ferredoxin,NADP(H) reductases (FNRs) represent a prototype of enzymes involved in numerous metabolic pathways. We found that pea FNR ferricyanide diaphorase activity was inhibited by Zn2+ (Ki 1.57 µm). Dichlorophenolindophenol diaphorase activity was also inhibited by Zn2+ (Ki 1.80 µm), but the addition of ferrocyanide was required, indicating that the inhibitor is an arrangement of both ions. Escherichia coli FNR was also inhibited by Zn-ferrocyanide, suggesting that inhibition is a consequence of common structural features of these flavoenzymes. The inhibitor behaves in a noncompetitive manner for NADPH and for artificial electron acceptors. Analysis of the oxidation state of the flavin during catalysis in the presence of the inhibitor suggests that the electron-transfer process between NADPH and the flavin is not significantly altered, and that the transfer between the flavin and the second substrate is mainly affected. Zn-ferrocyanide interacts with the reductase, probably increasing the accessibility of the prosthetic group to the solvent. Ferredoxin reduction was also inhibited by Zn-ferrocyanide in a noncompetitive manner, but the observed Ki was about nine times higher than those for the diaphorase reactions. The electron transfer to Anabaena flavodoxin was not affected by Zn-ferrocyanide. Binding of the apoflavodoxin to the reductase was sufficient to overcome the inhibition by Zn-ferrocyanide, suggesting that the interaction of FNRs with their proteinaceous electron partners may induce a conformational change in the reductase that alters or completely prevents the inhibitory effect. [source]


    Thermodynamic and kinetic analysis of the isolated FAD domain of rat neuronal nitric oxide synthase altered in the region of the FAD shielding residue Phe1395

    FEBS JOURNAL, Issue 12 2004
    Adrian J. Dunford
    In rat neuronal nitric oxide synthase, Phe1395 is positioned over the FAD isoalloxazine ring. This is replaced by Trp676 in human cytochrome P450 reductase, a tryptophan in related diflavin reductases (e.g. methionine synthase reductase and novel reductase 1), and tyrosine in plant ferredoxin-NADP+ reductase. Trp676 in human cytochrome P450 reductase is conformationally mobile, and plays a key role in enzyme reduction. Mutagenesis of Trp676 to alanine results in a functional NADH-dependent reductase. Herein, we describe studies of rat neuronal nitric oxide synthase FAD domains, in which the aromatic shielding residue Phe1395 is replaced by tryptophan, alanine and serine. In steady-state assays the F1395A and F1395S domains have a greater preference for NADH compared with F1395W and wild-type. Stopped-flow studies indicate flavin reduction by NADH is significantly faster with F1395S and F1395A domains, suggesting that this contributes to altered preference in coenzyme specificity. Unlike cytochrome P450 reductase, the switch in coenzyme specificity is not attributed to differential binding of NADPH and NADH, but probably results from improved geometry for hydride transfer in the F1395S, and F1395A,NADH complexes. Potentiometry indicates that the substitutions do not significantly perturb thermodynamic properties of the FAD, although considerable changes in electronic absorption properties are observed in oxidized F1395A and F1395S, consistent with changes in hydrophobicity of the flavin environment. In wild-type and F1395W FAD domains, prolonged incubation with NADPH results in development of the neutral blue semiquinone FAD species. This reaction is suppressed in the mutant FAD domains lacking the shielding aromatic residue. [source]


    Interflavin electron transfer in human cytochrome P450 reductase is enhanced by coenzyme binding

    FEBS JOURNAL, Issue 12 2003
    Relaxation kinetic studies with coenzyme analogues
    The role of coenzyme binding in regulating interflavin electron transfer in human cytochrome P450 reductase (CPR) has been studied using temperature-jump spectroscopy. Previous studies [Gutierrez, A., Paine, M., Wolf, C.R., Scrutton, N.S., & Roberts, G.C.K. Biochemistry (2002) 41, 4626,4637] have shown that the observed rate, 1/,, of interflavin electron transfer (FADsq , FMNsq,FADox , FMNhq) in CPR reduced at the two-electron level with NADPH is 55 ± 2 s,1, whereas with dithionite-reduced enzyme the observed rate is 11 ± 0.5 s,1, suggesting that NADPH (or NADP+) binding has an important role in controlling the rate of internal electron transfer. In relaxation experiments performed with CPR reduced at the two-electron level with NADH, the observed rate of internal electron transfer (1/, = 18 ± 0.7 s,1) is intermediate in value between those seen with dithionite-reduced and NADPH-reduced enzyme, indicating that the presence of the 2,-phosphate is important for enhancing internal electron transfer. To investigate this further, temperature jump experiments were performed with dithionite-reduced enzyme in the presence of 2,,5,-ADP and 2,-AMP. These two ligands increase the observed rate of interflavin electron transfer in two-electron reduced CPR from 1/, = 11 s,1 to 35 ± 0.2 s,1 and 32 ± 0.6 s,1, respectively. Reduction of CPR at the two-electron level by NADPH, NADH or dithionite generates the same spectral species, consistent with an electron distribution that is equivalent regardless of reductant at the initiation of the temperature jump. Spectroelectrochemical experiments establish that the redox potentials of the flavins of CPR are unchanged on binding 2,,5,-ADP, supporting the view that enhanced rates of interdomain electron transfer have their origin in a conformational change produced by binding NADPH or its fragments. Addition of 2,,5,-ADP either to the isolated FAD-domain or to full-length CPR (in their oxidized and reduced forms) leads to perturbation of the optical spectra of both the flavins, consistent with a conformational change that alters the environment of these redox cofactors. The binding of 2,,5,-ADP eliminates the unusual dependence of the observed flavin reduction rate on NADPH concentration (i.e. enhanced at low coenzyme concentration) observed in stopped-flow studies. The data are discussed in the context of previous kinetic studies and of the crystallographic structure of rat CPR. [source]


    Isocitrate dehydrogenase of Plasmodium falciparum

    FEBS JOURNAL, Issue 8 2003
    Energy metabolism or redox control?
    Erythrocytic stages of the malaria parasite Plasmodium falciparum rely on glycolysis for their energy supply and it is unclear whether they obtain energy via mitochondrial respiration albeit enzymes of the tricarboxylic acid (TCA) cycle appear to be expressed in these parasite stages. Isocitrate dehydrogenase (ICDH) is either an integral part of the mitochondrial TCA cycle or is involved in providing NADPH for reductive reactions in the cell. The gene encoding P. falciparum ICDH was cloned and analysis of the deduced amino-acid sequence revealed that it possesses a putative mitochondrial targeting sequence. The protein is very similar to NADP+ -dependent mitochondrial counterparts of higher eukaryotes but not Escherichia coli. Expression of full-length ICDH generated recombinant protein exclusively expressed in inclusion bodies but the removal of 27 N-terminal amino acids yielded appreciable amounts of soluble ICDH consistent with the prediction that these residues confer targeting of the native protein to the parasites' mitochondrion. Recombinant ICDH forms homodimers of 90 kDa and its activity is dependent on the bivalent metal ions Mg2+ or Mn2+ with apparent Km values of 13 µm and 22 µm, respectively. Plasmodium ICDH requires NADP+ as cofactor and no activity with NAD+ was detectable; the for NADP+ was found to be 90 µm and that of d -isocitrate was determined to be 40 µm. Incubation of P. falciparum under exogenous oxidative stress resulted in an up-regulation of ICDH mRNA and protein levels indicating that the enzyme is involved in mitochondrial redox control rather than energy metabolism of the parasites. [source]


    The expression of glutathione reductase in the male reproductive system of rats supports the enzymatic basis of glutathione function in spermatogenesis

    FEBS JOURNAL, Issue 5 2002
    Tomoko Kaneko
    Glutathione reductase (GR) recycles oxidized glutathione (GSSG) by converting it to the reduced form (GSH) using an NADPH as the electron source. The function of GR in the male genital tract of the rat was examined by measuring its enzymatic activity and examining the gene expression and localization of the protein. Levels of GR activity, the protein, and the corresponding mRNA were the highest in epididymis among testes, vas deferens, seminal vesicle, and prostate gland. The localization of GR, as evidenced by immunohistochemical techniques, reveals that it exists at high levels in the epithelia of the genital tract. In testis, GR is mainly localized in Sertoli cells. The enzymatic activity and protein expression of GR in primary cultured testicular cells confirmed its predominant expression in Sertoli cells. Intracellular GSH levels, expressed as mol per mg protein, was higher in spermatogenic cells than in Sertoli cells. As a result of these findings, the effects of buthionine sulfoximine (BSO), an inhibitor for GSH synthesis, and 1,3-bis(2-chlorethyl)-1-nitrosourea (BCNU), an inhibitor for GR, on cultured testicular cells were examined. Sertoli cells were prone to die as the result of BCNU, but not BSO treatment, although intracellular levels of GSH declined more severely with BSO treatment. Spermatogenic cells were less sensitive to these agents than Sertoli cells, which indicates that the contribution of these enzymes is less significant in spermatogenic cells. The results herein suggest that the GR system in Sertoli cells is involved in the supplementation of GSH to spermatogenic cells in which high levels of cysteine are required for protamine synthesis. In turn, the genital tract, the epithelia of which are rich in GR, functions in an antioxidative manner to protect sulfhydryl groups and unsaturated fatty acids in spermatozoa from oxidation during the maturation process and storage. [source]


    Kinetic study of sn -glycerol-1-phosphate dehydrogenase from the aerobic hyperthermophilic archaeon, Aeropyrum pernix K1

    FEBS JOURNAL, Issue 3 2002
    Jin-Suk Han
    A gene having high sequence homology (45,49%) with the glycerol-1-phosphate dehydrogenase gene from Methanobacterium thermoautotrophicum was cloned from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820). This gene expressed in Escherichia coli with the pET vector system consists of 1113 nucleotides with an ATG initiation codon and a TAG termination codon. The molecular mass of the purified enzyme was estimated to be 38 kDa by SDS/PAGE and 72.4 kDa by gel column chromatography, indicating presence as a dimer. The optimum reaction temperature of this enzyme was observed to be 94,96 °C at near neutral pH. This enzyme was subjected to two-substrate kinetic analysis. The enzyme showed substrate specificity for NAD(P)H- dependent dihydroxyacetone phosphate reduction and NAD+ -dependent,glycerol-1-phosphate (Gro1P) oxidation. NADP+ -dependent Gro1P oxidation was not observed with this enzyme. For the production of Gro1P in A. pernix cells, NADPH is the preferred coenzyme rather than NADH. Gro1P acted as a noncompetitive inhibitor against dihydroxyacetone phosphate and NAD(P)H. However, NAD(P)+ acted as a competitive inhibitor against NAD(P)H and as a noncompetitive inhibitor against dihydroxyacetone phosphate. This kinetic data indicates that the catalytic reaction by glycerol- 1-phosphate dehydrogenase from A. pernix follows a ordered bi,bi mechanism. [source]


    Purification and structure of the major product obtained by reaction of NADPH and NMNH with the myeloperoxidase/hydrogen peroxide/chloride system

    FEBS JOURNAL, Issue 10 2001
    Françoise Auchère
    The first spectrophotometric study of the reaction of the myeloperoxidase/H2O2/Cl, system with NADPH and NMNH showed that the reaction products were not the corresponding oxidized nucleotides and that modifications would take place on the nicotinamide part of the molecule [Auchère, F. & Capeillère-Blandin, C. (1999) Biochem. J. 343, 603,613]. In this report, in order to obtain more precise information on the structural modifications and mechanism of the reaction, we focus on the purification and isolation of products derived from NADPH and NMNH by RP-HPLC. Electrospray ionization mass spectra indicated that the relative height of the peaks reflected that of the natural isotopic abundance of 35Cl and 37Cl, providing evidence that the products derived from NADPH and NMNH were monochlorinated. Moreover, calculated masses revealed the 1 : 1 addition of HOCl to the molecule. Various 1D and 2D NMR experiments provided data for the assignments of the chemical shifts of protons and carbons and the coupling constants of the protons of the chlorinated nucleotides. Further NOESY experiments allowed the characterization of the spatial structure of the chlorinated product and showed that trans HOCl addition occurred at the C5=C6 carbon double bond of the nicotinamide ring, leading to a chlorohydrin. [source]


    A novel NADPH-dependent oxidoreductase with a unique domain structure in the hyperthermophilic Archaeon, Thermococcus litoralis

    FEMS MICROBIOLOGY LETTERS, Issue 1 2008
    András Tóth
    Abstract Thermococcus litoralis, a hyperthermophilic Archaeon, is able to reduce elemental sulfur during fermentative growth. An unusual gene cluster (nsoABCD) was identified in this organism. In silico analysis suggested that three of the genes (nsoABC) probably originated from Eubacteria and one gene (nsoD) from Archaea. The putative NsoA and NsoB are similar to NuoE- and NuoF-type electron transfer proteins, respectively. NsoC has a unique domain structure and contains a GltD domain, characteristic of glutamate synthase small subunits, which seems to be integrated into a NuoG-type sequence. Flavin and NAD(P)H binding sites and conserved cysteines forming iron,sulfur clusters binding motifs were identified in the protein sequences deduced. The purified recombinant NsoC contains one FAD cofactor per protein molecule and catalyzes the reduction of polysulfide with NADPH as an electron donor and it also reduces oxygen. It was concluded that the Nso complex is a new type of NADPH-oxidizing enzyme using sulfur and/or oxygen as an electron acceptor. [source]


    Glucose-6-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: expression of the g6pd gene and characterization of an extremely thermophilic enzyme

    FEMS MICROBIOLOGY LETTERS, Issue 2 2002
    Thomas Hansen
    Abstract The gene (open reading frame Tm1155, g6pd) encoding glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) of the hyperthermophilic bacterium Thermotoga maritima was cloned and functionally expressed in Escherichia coli. The purified recombinant enzyme is a homodimer with an apparent molecular mass of 95 kDa composed of 60-kDa subunits. Rate dependence (at 80°C) on glucose-6-phosphate and NADP+ followed Michaelis,Menten kinetics with apparent Km values of 0.15 mM and 0.03 mM, respectively; apparent Vmax values were about 20 U mg,1. The enzyme also reduced NAD+ (apparent Km 12 mM, Vmax 12 U mg,1). The 1000-fold higher catalytic activity (kcat/Km) with NADP+ over NAD+ defines the G6PD as NADP+ specific in vivo. G6PD activity was competitively inhibited by NADPH with a Ki value of 0.11 mM. With a temperature optimum of 92°C the enzyme is the most thermoactive G6PD described. [source]


    Isolation of the dxr gene of Zymomonas mobilis and characterization of the 1-deoxy- D -xylulose 5-phosphate reductoisomerase

    FEMS MICROBIOLOGY LETTERS, Issue 1 2000
    Sigrid Grolle
    Abstract The gene encoding the second enzyme of the 2C -methyl- D -erythritol 4-phosphate (MEP) pathway for isopentenyl diphosphate biosynthesis, 1-deoxy- D -xylulose 5-phosphate (DXP) reductoisomerase, was cloned and sequenced from Zymomonas mobilis. The deduced amino acid sequence showed the highest identity (48.2%) to the DXP reductoisomerase of Escherichia coli. Biochemical characterization of the purified DXP reductoisomerase showed a strict dependence of the enzyme on NADPH and divalent cations (Mn2+, Co2+ or Mg2+). The enzyme is a dimer with a molecular mass of 39 kDa per subunit and has a specific activity of 19.5 U mg protein,1. Catalysis of the intramolecular rearrangement and reduction of DXP to MEP is competitively inhibited by the antibiotic fosmidomycin with a Ki of 0.6 ,M. [source]


    Overproduction of reactive oxygen species in end-stage renal disease patients: A potential component of hemodialysis-associated inflammation

    HEMODIALYSIS INTERNATIONAL, Issue 1 2005
    Marion Morena
    Abstract During the past decade, hemodialysis (HD)-induced inflammation has been linked to the development of long-term morbidity in end-stage renal disease (ESRD) patients on regular renal replacement therapy. Because interleukins and anaphylatoxins produced during HD sessions are potent activators for nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, an example of an enzyme that is responsible for overproduction of reactive oxygen species (ROS), this may constitute a link between leukocyte activation and cell or organ toxicity. Oxidative stress, which results from an imbalance between oxidant production and antioxidant defense mechanisms, has been documented in ESRD patients using lipid and/or protein oxidative markers. Characterization of HD-induced oxidative stress has included identification of potential activators for NADPH oxidase. Uremia per se could prime phagocyte oxidative burst. HD, far from improving the oxidative status, results in an enhancement of ROS owing to hemoincompatibility of the dialysis system, hemoreactivity of the membrane, and trace amounts of endotoxins in the dialysate. In addition, the HD process is associated with an impairment in antioxidant mechanisms. The resulting oxidative stress has been implicated in long-term complications including anemia, amyloidosis, accelerated atherosclerosis, and malnutrition. Prevention of oxidative stress in HD might focus on improving the hemocompatibility of the dialysis system, supplementation of deficient patients with antioxidants, and modulation of NADPH oxidase by pharmacologic approaches. [source]


    Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver

    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2008
    Wilma M. Frederiks
    Summary (Pre)neoplastic lesions in livers of rats induced by diethylnitrosamine are characterized by elevated activity of the first irreversible enzyme of the oxidative branch of the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase (G6PD), for production of NADPH. In the present study, the activity of G6PD, and the other NADPH-producing enzymes, phosphogluconate dehydrogenase (PGD), isocitrate dehydrogenase (ICD) and malate dehydrogenase (MD) was investigated in (pre)neoplastic lesions by metabolic mapping. Transketolase (TKT), the reversible rate-limiting enzyme of the non-oxidative branch of the PPP, mainly responsible for ribose production, was studied as well. Activity of G6PD in (pre)neoplastic lesions was highest, whereas activity of PGD and ICD was only 10% and of MD 5% of G6PD activity, respectively. Glucose-6-phosphate dehydrogenase activity in (pre)neoplastic lesions was increased 25 times compared with extralesional parenchyma, which was also the highest activity increase of the four NADPH-producing dehydrogenases. Transketolase activity was 0.1% of G6PD activity in lesions and was increased 2.5-fold as compared with normal parenchyma. Transketolase activity was localized by electron microscopy exclusively at membranes of granular endoplasmic reticulum in rat hepatoma cells where G6PD activity is localized as well. It is concluded that NADPH in (pre)neoplastic lesions is mainly produced by G6PD, whereas elevated TKT activity in (pre)neoplastic lesions is responsible for ribose formation with concomitant energy supply by glycolysis. The similar localization of G6PD and TKT activity suggests the channelling of substrates at this site to optimize the efficiency of NADPH and ribose synthesis. [source]


    The pentose-phosphate pathway in neuronal survival against nitrosative stress

    IUBMB LIFE, Issue 1 2010
    Juan P. Bolaños
    Abstract Neurons are thought to be particularly vulnerable cells against reactive oxygen and nitrogen species (RONS) damage (nitrosative stress), due in part to their weak antioxidant defense and low ability to compensate energy homeostasis. Intriguingly, nitrosative stress efficiently stimulates the rate of the antioxidant pentose-phosphate pathway (PPP), which generates NADPH a necessary cofactor for the reduction of glutathione disulfide. In fact, inhibition of PPP sensitizes cultured neurons to glutathione oxidation and apoptotic death, whereas its stimulation confers resistance to nitrosative stress. Furthermore, we recently described that neurons can preferentially use glucose through the PPP by inhibiting glycolysis, which is achieved by continuously degrading the glycolytic positive-effector protein, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (Pfkfb3) by the action of the E3 ubiquitine ligase anaphase-promoting complex/cyclosome (APC/C)Cdh1. These results suggest that the antioxidant fragility of neurons may be compensated by the PPP at the expense of inhibiting bioenergetic glycolysis. © 2009 IUBMB IUBMB Life, 62(1):14,18, 2010 [source]


    Cytosolic NADP phosphatases I and II from Arthrobacter sp. strain KM: Implication in regulation of NAD+/NADP+ balance

    JOURNAL OF BASIC MICROBIOLOGY, Issue 3 2004
    Shigeyuki Kawai
    NADP phosphatase (NADPase) is an enzyme that converts NADP+ into NAD+ through dephosphorylation of NADP+, and is considered to be one of the possible candidates for regulation of the NAD+/NADP+ balance in vivo. In order to obtain an intrinsic NADPase, the NADP+ -degrading activity in a membrane-free cell extract of a Gram-positive bacterium, Arthrobacter sp. strain KM, was first assessed and demonstrated to be mainly achieved through the NADPase reaction, indicating NADPase is essential for degradation of NADP+ and therefore for regulation of the NAD+/NADP+ balance in cytosol. Then, the isolation of cytosolic NADPase was attempted using NADP+ as a substrate. Two NADPase isozymes, designated as NADPases I and II, were purified from the cell extract of the bacterium, and were indicated to be the sole cytosolic NADPases regulating the balance of NAD+/NADP+. NADPases I and II are homodimers of 32 and 30 kDa subunits, respectively, and most active at pH 7,8. The N-terminal amino acid sequences of the two enzymes are similar to each other. Among the biological substrates tested, both enzymes showed the highest activity toward NADP+ and NADPH. AMP, ADP, and pyridoxal 5,-phosphate were also dephosphorylated, but to lower extents. Comparison of the features of NADPases I and II with those of other acid phosphatases possessing NADPase activity suggested that NADPases I and II are novel enzymes participating in regulation of the NAD+/NADP+ balance in the cytosol. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Biochemical characteristics of purified beef liver NADPH,cytochrome P450 reductase

    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 6 2002
    Emel Arinç
    Abstract NADPH,cytochrome P450 reductase, an obligatory component of the cytochrome P450 dependent monooxygenase system, was purified to electrophoretic homogeneity from beef liver microsomes. The purification procedure involved the ion exchange chromatography of the detergent-solubilized microsomes on first and second DEAE-cellulose columns, followed by 2,,5,-ADP Sepharose affinity chromatography. Further concentration of the enzyme and removal of Emulgen 913 and 2,-AMP were accomplished on the final hydroxylapatite column. The enzyme was purified 239-fold and the yield was 13.5%. Monomer molecular weight of the enzyme was estimated to be 76000 ± 3000 (N = 5) by SDS-PAGE. The absolute absorption spectrum of beef reductase showed two peaks at 455 and 378 nm, with a shoulder at 478 nm, characteristics of flavoproteins. The effects of cytochrome c concentration, pH, and ionic strength on enzyme activity were studied. Reduction of cytochrome c with the enzyme followed Michaelis,Menten kinetics, and the apparent Km of the purified enzyme was found to be 47.7 ,M for cytochrome c when the enzyme activity was measured in 0.3 M potassium phosphate buffer (pH 7.7). Stability of cytochrome c reductase activity was examined at 25 and 37°C in the presence and absence of 20% glycerol. The presence of glycerol enhanced the stability of cytochrome c reductase activity at both temperatures. Sheep lung microsomal cytochrome P4502B and NADPH,cytochrome P450 reductase were also purified by the already existing methods developed in our laboratory. Both beef liver and sheep lung reductases were found to be effective in supporting benzphetamine and cocaine N-demethylation reactions in the reconstituted systems containing purified sheep lung cytochrome P4502B and synthetic lipid, phosphatidylcholine dilauroyl. © 2002 Wiley Periodicals, Inc. J Biochem Mol Toxicol 16:286,297, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.10054 [source]


    PML/RAR, fusion protein mediates the unique sensitivity to arsenic cytotoxicity in acute promyelocytic leukemia cells: Mechanisms involve the impairment of cAMP signaling and the aberrant regulation of NADPH oxidase,

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2008
    Lingna Li
    Acute promyelocytic leukemia (APL) cells are characterized by PML/RAR, fusion protein, high responsiveness to arsenic trioxide (ATO)-induced cytotoxicity and an abundant generation of reactive oxygen species (ROS). In this study we investigated the association among these three features in APL-derived NB4 cells. We found that NADPH oxidase-derived ROS generation was more abundant in NB4 cells compared with monocytic leukemia U937 cells. By using PR9, a sub-line of U937 stably transduced with the inducible PML/RAR, expression vectors, we attributed disparities on ROS generation and ATO sensitivity to the occurrence of PML/RAR, fusion protein, since PML/RAR,-expressing cells appeared higher NADPH oxidase activity, higher ROS level and higher sensitivity to ATO. On the other hand, the basal intensity of cAMP signaling pathway was compared between NB4 and U937 as well as between PR9 cells with or without PML/RAR,, demonstrating that PML/RAR,-expressing cells had an impaired cAMP signaling pathway which relieved its inhibitory effect on NADPH oxidase derived ROS generation. In summary, the present study demonstrated the correlation of PML/RAR, with cAMP signaling pathway, NADPH oxidase and ROS generation in APL cells. PML/RAR, that bestows NB4 cells various pathological features, paradoxically also endows these cells with the basis for susceptibility to ATO-induced cytotoxcity. J. Cell. Physiol. 217: 486,493, 2008. © 2008 Wiley-Liss, Inc. [source]


    New enzymatic assay for serum urea nitrogen using urea amidolyase

    JOURNAL OF CLINICAL LABORATORY ANALYSIS, Issue 2 2003
    Shigeki Kimura
    Abstract We established an enzymatic assay for measurement of serum urea nitrogen using urea amidolyase (EC 3.5.1.45) from yeast species. The method is based on hydrolysis of urea by the enzyme. In this assay, we eliminated endogenous ammonium ion by use of glutamate dehydrogenase (EC 1.4.1.4). Then in the presence of urea amido-lyase, ATP, bicarbonate, magnesium, and potassium ions, ammonium ion was produced proportionally to urea concentration in serum. The concentra-tion of ammonium ion formed was determined by adding GLDH to produce NADP+ in the presence of 2-oxoglutarate and NADPH. We then monitored the change of absorbance at 340 nm. The inhibitory effect of calcium ion on this assay was eliminated by adding glyco-letherdiamine-N, N, N,, N,-tetraacetic acid to the reaction system. The with-in-assay coefficient of variations (CVs) of the present method were 1.80,3.76% (n = 10) at 2.8,19.0 mmol/L, respectively. The day-to-day CVs were 2.23,4.59%. Analytical recovery was 92,115%. The presence of ascorbic acid, bilirubin, hemoglobin, lipemic material, ammo-nium ion, or calcium ion did not affect this assay system. The correlation be-tween values obtained with the present method (y) and those by another enzy-matic method (x) was 0.997 (y = 1.02x , 0.10 mmol/L, Sy/x = 0.841, n = 100), with a mean difference of ,0.18 ± 0.86 mmol/L [(values by reference method , that of present method) ± SD] using the Bland-Altman technique. J. Clin. Lab. Anal. 17:52,56, 2003. © 2003 Wiley-Liss, Inc. [source]


    Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: A novel mechanism for implant debris reactivity

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 7 2009
    Marco S. Caicedo
    Abstract Immune reactivity to soluble and particulate implant debris remains the primary cause of aseptic inflammation and implant loosening. However, the intracellular mechanisms that trigger immune cells to sense and respond to exogenous nonbiological agents such as metal particles or metal ions released from orthopedic implants remain unknown. Recent studies in immunology have outlined the importance of the intracellular inflammasome complex of proteins in sensing danger/stress signals triggered by nonbiological agents in the cytosol of macrophages. We hypothesized that metal implant debris can activate the inflammasome pathway in macrophages that causes caspase-1-induced cleavage of intracellular pro-IL-1, into its mature form, resulting in IL-1, secretion and induction of a broader proinflammatory response. We tested this hypothesis by examining whether soluble cobalt, chromium, molybdenum, and nickel ions and Co-Cr-Mo alloy particles induce inflammasome- mediated macrophage reactivity. Our results demonstrate that these agents stimulate IL-1, secretion in human macrophages that is inflammasome mediated (i.e., NADPH-, caspase-1-, Nalp3-, and ASC-dependent). Thus, metal ion- and particle-induced activation of the inflammasome in human macrophages provides evidence of a novel pathway of implant debris-induced inflammation, where contact with implant debris is sensed and transduced by macrophages into a proinflammatory response. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 847,854, 2009 [source]