NaCl Concentration (nacl + concentration)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


Effects of NaCl Concentration on Salting-in and Dilution During Salting-out on Soy Protein Fractionation

JOURNAL OF FOOD SCIENCE, Issue 4 2006
N. A. Deak
ABSTRACT:, Glycinin and ,-conglycinin are the main storage proteins in soybeans that can be fractionated by using alkali extraction, SO2, salting-in with NaCl, salting-out by dilution and pH adjustment to produce a glycinin-rich fraction, a ,-conglycinin,rich fraction, and an intermediate fraction, which is a mixture of the two proteins. Two different strategies were employed to optimize the procedure to achieve high efficiency in recovering the ,-conglycinin,rich fraction. The first strategy was to optimize salting-in effects of NaCl, and the effects of NaCl concentration on the yields and purities of the protein fractions were investigated. The maximum protein yield of the ,-conglycinin,rich fraction was obtained at 500 mM NaCl, but at the expense of purity. The optimum NaCl concentration was 250 mM, at which good protein yield (18.5%) and purity (84.5%) were achieved. At higher NaCl concentrations, the protein yields of the intermediate fractions were significantly lower, and the protein loss in the whey fraction increased. The second strategy was to improve the salting-out step for the ,-conglycinin,rich fraction. At 0- and 0.5-fold dilution, the purities and yields of the ,-conglycinin,rich fractions were significantly lower than at 1.0- and 2.0-fold dilution. There were no differences in protein yields or purities when using 1.0- or 2.0-fold dilution. According to these results, the recommended NaCl concentration for the salting-in step is 250 mM and the dilution factor for salting-out is 1.0. [source]


Mechanisms of transjunctional transport of NaCl and water in proximal tubules of mammalian kidneys

ACTA PHYSIOLOGICA, Issue 1 2002
F. KIILArticle first published online: 30 APR 200
ABSTRACT Tight junctions and the intercellular space of proximal tubules are not accessible to direct measurements of fluid composition and transport rates, but morphological and functional data permit analysis of diffusion and osmosis causing transjunctional NaCl and water transport. In the S2 segment NaCl diffuses through tight junctions along a chloride gradient, but against a sodium gradient. Calculation in terms of modified Nernst,Fick diffusion equation after eliminating electrical terms shows that transport rates (300,500 pmol min,1 mm,1 tubule length) and transepithelial voltage of +2 mV are in agreement with observations. Diffusion coefficients are Dtj=1500 ,m2 s,1 in the S1 segment, and Dtj=90,100 ,m2 s,1 in the S2 segment where apical intercellular NaCl concentration is 132 mM, 1 mM below complete stop (Dtj=0 and Donnan equilibrium). Tight junctions with gap distance 6 Å are impermeable to mannitol (effective molecular radius 4 Å); reflection coefficients are ,=0.92 for NaHCO3 and ,=0.28 for NaCl, because of difference in anion size. The osmotic force is provided by a difference in effective transjunctional osmolality of 10 mOsm kg,1 in the S1 segment and 30 mOsm kg,1 in the S2 segment, where differences in transjunctional concentration contribute with 21 mOsm kg,1 for NaHCO3 and ,4 mOsm kg,1 for NaCl. Transjunctional difference of 30 mOsm kg,1 causes a volume flow of 2 nL min,1 mm,1 tubule length. Luminal mannitol concentration of 30 mM stops all volume flow and diffusive and convective transport of NaCl. In conclusion, transjunctional diffusion and osmosis along gradients generated by transcellular transport of other solutes account for all NaCl transport in proximal tubules. [source]


Mechanisms of intercellular hypertonicity and isotonic fluid absorption in proximal tubules of mammalian kidneys

ACTA PHYSIOLOGICA, Issue 1 2002
F. KIILArticle first published online: 30 APR 200
ABSTRACT The main purpose of this theoretical analysis (second of two articles) is to examine whether transjunctional diffusion of NaCl causes intercellular hypertonicity, which permits transcellular water transport across solute-impermeable lateral cell membranes until osmotic equilibration. In the S2 segment with tubular NaCl concentration 140 mM, the calculated apical intercellular NaCl concentration is c0 , 132 mM, which exceeds peritubular NaCl concentration by 12 mM or 22 mOsm kg,1. Variations in volume flow, junctional reflection coefficient (,NaCl=0.25,0.50), gap distance (g=6,8 Å), junctional depth (d=18,100 Å), intercellular diffusion coefficient (DLIS=500,1500 ,m2 s,1) and hypothetical active NaCl transport alter c0 only by a fraction of 1 mM. However, dilution and back-leakage of NaHCO3 lower apical intercellular hyperosmolality to ,18 mOsm kg,1. Water transport through solute-impermeable lateral cell membranes continues until intercellular and cellular osmolalities are equal. Transcellular and transjunctional volume flow are of similar magnitude (2 nL min,1 mm,1 tubule length) in the S2 segment. Thus, diffusion ensures isotonic absorption of NaCl. Two-thirds of NaHCO3 and other actively transported sodium salts are extruded into the last third of the exponentially widening intercellular space where the exposure time is only 0.9 s. Osmotic equilibration is dependent on aquaporins in the cell membranes. If permeability to water is low, transcellular water transport stops; tubular fluid becomes hypotonic; NaCl diffusion diminishes, but transjunctional water transport remains unaltered as long as transcellular transport of NaHCO3 and other solutes provides the osmotic force. [source]


,- d -Mannopyranosyl-(1,2)-,- d -glucopyranosyl-(1,2)-glycerate in the thermophilic bacterium Petrotoga miotherma , structure, cellular content and function

FEBS JOURNAL, Issue 12 2007
Carla D. Jorge
The intracellular accumulation of low molecular mass organic compounds in response to stressful conditions was investigated in the thermophilic bacterium Petrotoga miotherma, a member of the order Thermotogales. This led to the discovery of a new solute, whose structure was established as ,- d -mannopyranosyl-(1,2)-,- d -glucopyranosyl-(1,2)-glycerate (MGG) by MMR spectroscopy and MS. Under optimum growth conditions (3% NaCl; 55 °C), MGG was the major solute [up to 0.6 µmol·(mg protein),1]; ,-glutamate and proline were also present but in minor amounts [below 0.08 µmol·(mg protein),1]. The level of MGG increased notably with the salinity of the growth medium up to the optimum NaCl concentration. At higher NaCl concentrations, however, the level of MGG decreased, whereas the levels of proline and ,-glutamate increased about five-fold and 10-fold, respectively. MGG plays a role during low-level osmotic adaptation of Petrotoga miotherma, whereas ,-glutamate and, to a lesser extent, proline are used for osmoprotection under salt stress. MGG is not part of the cell strategy for coping with heat or oxidative stress. Nevertheless, MGG was an efficient protector of pig heart malate dehydrogenase against heat inactivation and freeze-drying, although mannosylglycerate was better. This is the first report on the occurrence of MGG in living systems. [source]


Effect of physico-chemical and molecular mobility parameters on Staphylococcus aureus growth

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 8 2003
Elena Vittadini
Summary The role played by water activity, ,mobility' and physico-chemical properties of the media in modulating microbial response has been the object of large debate in the scientific community. In this study, Staphylococcus aureus growth parameters (lag phase and cell density at 24 h) in brain heart infusion (BHI) and BHI:NaCl (1:1) were analysed in their correlation with physico-chemical/mobility parameters descriptive of the media [solid content, aw, kinematic viscosity, 17O NMR (R2, Pbw and )]. In these high moisture content, liquid and ,homogeneous' media S.aureus growth related to all the physico-chemical and molecular mobility parameters analysed in a similar manner and it was found to be influenced more significantly by added NaCl than by the physico-chemical and molecular mobility of the media. Staphylococcus aureus growth parameters correlated better with aw (relatively independent of NaCl concentration) than with any other parameter considered in this study. [source]


Predictive models of the combined effects of curvaticin 13, NaCl and pH on the behaviour of Listeria monocytogenes ATCC 15313 in broth

JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2000
A. Bouttefroy
Thirty-three strains of Listeria monocytogenes belonging to different serotypes were tested for their sensitivity to curvaticin 13, an antilisterial bacteriocin produced by Lactobacillus curvatus SB13, using the well diffusion method in Institut Pasteur agar plates at 37 °C. No relationship between serotype and sensitivity was observed. The sensitivity of this species was strain-dependent and a large variation in tolerance to curvaticin 13 was observed. The combined effects of curvaticin 13 (0,160 AU ml,1), NaCl (0,6% w/v), pH values (5·0,8·2) and incubation time (0,24 h) were investigated on L. monocytogenes ATCC 15313 in trypcase soy,yeast extract broth at 22 °C. For this study, two Doehlert matrices were used in order to investigate the main effects of these factors and their different interactions. The results were analysed using the Response Surface Methodology. Curvaticin 13 had a major inhibitory effect and the response was NaCl concentration-, time- and pH-dependent. This inhibitory activity was the same at pH values between 6·6 and 8·2. Curvaticin 13 was bactericidic at acidic pH values, but the surviving cells resumed growth. For a short incubation time (12 h), the effectiveness of curvaticin 13 was maximal in the absence of NaCl. For longer incubation times (12,48 h), with high NaCl (6%) and curvaticin 13 concentrations (160 AU ml,1), the inhibition of L. monocytogenes was greater than that observed with NaCl or curvaticin 13 alone. [source]


Effect of salinity on denitrification under limited single carbon source by Marinobacter sp. isolated from marine sediment

JOURNAL OF BASIC MICROBIOLOGY, Issue 3 2010
Miyo Nakano
Abstract Marinobacter comprises Gram-negative, aerobic, motile, and rod-shaped bacteria within the ,-subclass of the Proteobacteria and is known to be halophilic or halotolerant, heterotrophic neutrophile. Two strains classified as belonging to Marinobacter, named PAD-2 and SeT-1, were isolated from marine sediment. The most closely related species of PAD-2 and SeT-1 are M. alkaliphilus and M. guinea, respectively. The strain PAD-2 exhibited remarkably higher denitrification at concentrations of 0.5 to 1 M NaCl (3,6% w/w) than at other salinities (2 and 3 M NaCl, 12,18% w/w), and optimal denitrification was observed in media with 0.5 M NaCl. The effect of pH on denitrification by strain PAD-2 was also examined, and the optimum denitrification occurred at neutral pH rather than under alkaline conditions. Overall, strain PAD-2 appears to be a novel halotolerant species belonging to the genus Marinobacter that shares many characteristics, such as substrate utilization profile and optimum NaCl concentration for growth with M. alkaliphilus. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Influence of temperature and salinity on the germination of Lotus creticus (L.) from the arid land of Tunisia

AFRICAN JOURNAL OF ECOLOGY, Issue 2 2010
Mokhtar Rejili
Abstract Effects of salinity, temperature and their interactions on the rate and final percentage of germination were evaluated for two populations (Msarref, Oued dkouk) of the invasive glycophyte Lotus creticus Linné, grown under arid environmental conditions of the Tunisia. Seeds that were not treated with NaCl germinated well in a wide range of temperatures. For both populations, maximum germination occurred in distilled water at 25°C and lowest germination for all salinities was at 35°C. Germination was substantially delayed and significantly reduced with an increase in NaCl to levels above 300 mm. Compared to the Oued dkouk population, final germination and germination rate of the Msarref population was completely inhibited at 300 mm NaCl. The interactive effect of temperature and NaCl concentration on final germination and germination rate was significant (P < 0.01), indicating that the germination response to salinity depended on temperature. The inhibition of Oued dkouk population seed germination at high salt concentration was mostly due to osmotic effects while ionic effects were noted at Msarref population. The germination behaviour of the Oued dkouk population would therefore imply adaptive mechanisms to saline environments, while in the Msarref population such mechanisms seem to be absent. Since seed germination is more sensitive to salinity stress than the growth of established plants, the greater tolerance to salinity of Oued dkouk population would be an adaptive feature of this population to saline environment. Résumé L'effet de l'interaction de la salinité et de la température sur la germination de deux populations (Msarref et Oued Dkouk) du lotier de crête (Lotus creticus L.), glycophyte poussant dans des conditions environnementales arides en Tunisie, est étudié. Chez les deux populations, le taux de germination le plus élevé est obtenu à 25°C et le plus faible à 35°C. A 300 mm de NaCl, la germination de la population d'Oued Dkouk est ralentie alors que celle de Msarref est complètement inhibée. L'effet de l'interaction de deux stress est hautement significatif (P < 0,01). Il semble, ainsi, que l'effet de chacun de deux stress est intensifié par l'autre. Cependant, les deux populations montrent un comportement halophytique différent. L'inhibition de la germination, par la salinité, chez Oued Dkouk est due à un effet osmotique alors que chez Mserref, il est ionique. Il en résulte que la population de oued Dkouk présente une capacité adaptative à l'aridité plus importante que celle observée chez la population Msarref. [source]


PROTEINASES IN HYBRID CATFISH VISCERA: CHARACTERIZATION AND EFFECT OF EXTRACTION MEDIA

JOURNAL OF FOOD BIOCHEMISTRY, Issue 4 2010
SAPPASITH KLOMKLAO
ABSTRACT Proteolytic activity from viscera extract of hybrid catfish (Clarias macrocephalus × Clarias gariepinus) was investigated. Optimal pH and temperature for casein hydrolysis were 9.0 and 50C, respectively. The enzyme was stable to heat treatment up to 40C and over a pH range of 7,11 for 30,120 min. The proteolytic activity was effectively inhibited by soybean trypsin inhibitor, benzamidine, phenylmethylsulfonyl fluoride and N -p-tosyl-L-lysine chloromethyl ketone. Activities of the viscera extract continuously decreased as NaCl concentration increased, while activities increased as CaCl2 concentration increased. Based on the proteinase activity of zones separated by electrophoresis, the molecular mass of the major proteinases in hybrid catfish viscera was 23 and 20 kDa. The effect of extraction media on recovery of proteinases was also studied. Extraction of the viscera powder with 50 mM Tris-HCl, pH 7.0 containing 0.5 M NaCl and 0.2% (v/v) Brij 35 rendered a higher recovery of proteinase activity than other extractants tested (P < 0.05). The results suggested that major proteinases in hybrid catfish viscera were heat-activated alkaline proteinases, most likely trypsin-like serine proteinases. PRACTICAL APPLICATIONS Hybrid catfish viscera is an abundant and underutilized resource that can be used as a unique proteinase source. Proteinase from various sources catalyzes the hydrolysis of peptide bonds. Thus, it is expected that like other proteinases, hybrid catfish proteinase would be useful in biomedical, food and beverage application. Moreover, the presented extraction media could be adopted to recover the trypsin-like serine proteinase from hybrid catfish viscera, which is currently a solid waste of Pa-duk-ra industry. [source]


EFFECT OF SALTS AND POLYETHYLENE GLYCOLS ON THE PARTITIONING AND RECOVERY OF TRYPSIN FROM HYBRID CATFISH VISCERA IN AQUEOUS TWO-PHASE SYSTEMS

JOURNAL OF FOOD BIOCHEMISTRY, Issue 4 2010
SAPPASITH KLOMKLAO
ABSTRACT The partitioning behavior of trypsin from hybrid catfish viscera in aqueous two-phase systems (ATPS) was studied. Factors such as polyethylene glycol (PEG) molecular mass and concentration, as well as types and concentration of salts, affected protein separation. Trypsin partitioned mainly in the top PEG-rich phase. ATPS formed by PEG of molecular weight 4,000 (20%, w/w) and NaH2PO4 (20%, w/w) showed the best capability for trypsin purification from hybrid catfish viscera. Under such conditions, the highest specific activity (30.05 units/µg protein) and purification (27.3-fold), were obtained. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the enzyme after ATPS separation was near homogeneity and based on the activity staining, the band intensity of enzyme in ATPS fraction increased, indicating the greater specific activity of the viscera extract. The partitioned enzyme displayed optimal activity at pH 9.0 and 50C, respectively. The enzyme was stable up to 40C and within the pH range of 8,12. The enzyme exhibited a progressive decrease in activity with increasing NaCl concentration. PRACTICAL APPLICATIONS This paper describes the separation and recovery of trypsin from hybrid catfish viscera in ATPS and its properties. ATPS provides an efficient and attractive method for partitioning and recovery of trypsin from hybrid catfish viscera. Trypsins from various sources catalyze the hydrolysis of peptide bonds on the carboxyl sides of arginine and lysine. Therefore, it is expected that like other trypsins, trypsin after ATPS separation from hybrid catfish viscera could be useful in the biomedical, food and beverage industries. [source]


PREPARATION AND CHARACTERIZATION OF PEPSIN-SOLUBILIZED TYPE I COLLAGEN FROM THE SCALES OF SNAKEHEAD (OPHIOCEPHALUS ARGUS)

JOURNAL OF FOOD BIOCHEMISTRY, Issue 1 2009
WENTAO LIU
ABSTRACT Pepsin-solubilized collagen prepared from the scales of snakehead (Ophiocephalus argus) was separated into two fractions, major and minor, by NaCl precipitation. The results of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), amino acid composition, and secondary structure showed that the major collagen was typical type I collagen; in contrast, the minor collagen might be classified as type V collagen from the SDS-PAGE patterns and precipitation properties by NaCl. A sharp decrease in solubility of type I collagen was observed at the NaCl concentration of 40 g/L. The maximum and the minimum solubilities of collagen were observed at pH 3 and 8, respectively. Peptide maps of type I collagen digested by trypsin and V8 protease were different from those of calfskin and fish skin collagens. The imino acid content of type I collagen was lower than those of mammalian collagens and so did its denaturation temperature that was 30.3C obtained by viscosity measurement. PRACTICAL APPLICATIONS Collagen has been widely utilized as a material for foods, cosmetics, and pharmaceuticals. However, the use of collagen-derived products from land animals (e.g., bovine and pig) has been called into question because of foot-and-mouth disease crisis etc. Aquatic animal offals, which are readily available and inexpensive, seem to be safe sources for extraction of collagen. This work reports on preparation and characterization of collagen from snakehead scales, which will have potential in supplementing the skins and bones of land animals as an important collagen resource for use in functional food, biomedical, and cosmetic industries. [source]


COMPARATIVE STUDIES ON PROTEOLYTIC ACTIVITY OF SPLENIC EXTRACT FROM THREE TUNA SPECIES COMMONLY USED IN THAILAND

JOURNAL OF FOOD BIOCHEMISTRY, Issue 5 2004
SUPPASITH KLOMKLAO
ABSTRACT Proteolytic activities of splenic extract from three tuna species including skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacores) and tongol tuna (Thunnus tonggol) were studied. Optimal activity of splenic extract from all tuna species was at pH 9.0 and 55C when casein was used as a substrate. Among all species tested, yellowfin tuna showed the highest activity, followed by skipjack tuna and tongol tuna. The proteolytic activity was strongly inhibited by soybean trypsin inhibitor, TLCK and partially inhibited by ethylenediaminetetraacetic acid. E-64, N-ethylmaleimide, iodoacetic acid, TPCK and pepstatin A showed no inhibition. The effect of NaCl and CaCl2 on proteolytic activity was also investigated. Activities continuously decreased as NaCl concentration increased, and no activity remained in the presence of 30% NaCl. On the other hand, activities increased as CaCl2 concentration increased. The highest activity was obtained in the presence of 1 mM CaCl2. SDS-substrate gel electrophoresis revealed that major proteinases in splenic extract from different tuna species were different in apparent molecular weights and sensitivity to TLCK. Although the major activity bands of all species were strongly inhibited by soybean trypsin inhibitor, varying sensitivity to TLCK probably implied the differences in binding characteristic of enzyme to substrate and/or inhibitors. The results suggest that major proteinases in spleen of all tuna species were trypsin-like serine proteinases. [source]


ACIDIC ELECTROLYZED WATER PROPERTIES AS AFFECTED BY PROCESSING PARAMETERS AND THEIR RESPONSE SURFACE MODELS

JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 1 2004
GABRIEL O. I. EZEIKE
Several studies of acidic electrolyzed (EO) water demonstrated the efficacy of EO water for inactivation of different foodborne pathogens and reported on the chemical species present in EO water. This study was conducted to investigate the effect of production parameters (voltage, NaCl concentration, flow rate, and temperature) on the properties of EO water and to model the complex reactions occurring during the generation of EO water. At 0.1% salt concentration, EO water was produced at 2, 10, and 28 V. However, due to high conductivity of the electrolyte at 0.5% salt concentration, the voltage applied across the cell was limited to 7 V. The electrolyte flow rate was set at 0.5, 2.5, and 4.5 L/mn. For pH and oxidation-reduction potential (ORP), NaCl concentration was the most significant factor followed by voltage, electrolyte flow rate and temperature, respectively. However, in the case of residual chlorine, flow rate was relatively more important than voltage. Response surface methodology yielded models to predict EO water properties as functions of the process parameters studied, with very high coefficients of determination (R2= 0.872 to 0.938). In general, the higher the NaCl concentration and voltage, the higher the ORP and residual chlorine of EO water. Increased electrolyte flow rate will produce EO water with lower ORP and residual chlorine due to the shorter residence time in the electrolytic cell. [source]


Effects of NaCl Concentration on Salting-in and Dilution During Salting-out on Soy Protein Fractionation

JOURNAL OF FOOD SCIENCE, Issue 4 2006
N. A. Deak
ABSTRACT:, Glycinin and ,-conglycinin are the main storage proteins in soybeans that can be fractionated by using alkali extraction, SO2, salting-in with NaCl, salting-out by dilution and pH adjustment to produce a glycinin-rich fraction, a ,-conglycinin,rich fraction, and an intermediate fraction, which is a mixture of the two proteins. Two different strategies were employed to optimize the procedure to achieve high efficiency in recovering the ,-conglycinin,rich fraction. The first strategy was to optimize salting-in effects of NaCl, and the effects of NaCl concentration on the yields and purities of the protein fractions were investigated. The maximum protein yield of the ,-conglycinin,rich fraction was obtained at 500 mM NaCl, but at the expense of purity. The optimum NaCl concentration was 250 mM, at which good protein yield (18.5%) and purity (84.5%) were achieved. At higher NaCl concentrations, the protein yields of the intermediate fractions were significantly lower, and the protein loss in the whey fraction increased. The second strategy was to improve the salting-out step for the ,-conglycinin,rich fraction. At 0- and 0.5-fold dilution, the purities and yields of the ,-conglycinin,rich fractions were significantly lower than at 1.0- and 2.0-fold dilution. There were no differences in protein yields or purities when using 1.0- or 2.0-fold dilution. According to these results, the recommended NaCl concentration for the salting-in step is 250 mM and the dilution factor for salting-out is 1.0. [source]


Response Surface Model for the Estimation of Escherichia coli O 157:H7 Growth under Different Experimental Conditions

JOURNAL OF FOOD SCIENCE, Issue 1 2005
Rose Maria García-Gimeno
ABSTRACT: In this study, a Response Surface Model (RSM) of Escherichia coli O157:H7 as affected by pH levels, sodium chloride and nitrite concentrations, temperature, and aerobic/anaerobic conditions is presented. The standard error of prediction (%SEP) obtained was acceptable for the growth rate prediction (33%SEP), although a bit high for lag time (53.01 %SEP). Mathematical validation demonstrated that the RSM predicts growth rate values on the fail-safe side in aerobic conditions and within the acceptable range (bias factor [Bf] = 0.99) with acceptable accuracy (accuracy factor [Af] = 1.15), as well as for lag time (Bf = 1.05; Af = 1.25). Temperature was found to have the greatest effect on the kinetic parameters, followed by NaCl concentration and pH. In the experimental range considered here (0 to 200 ppm), NaNO2 concentration was found to have a significant effect on growth rate but not on lag time. [source]


Isolation and Characteristics of Bacillus subtilis CN2 and its Collagenase Production

JOURNAL OF FOOD SCIENCE, Issue 3 2002
L. H. Tran
ABSTRACT: : An isolated bacterium strain named CN2 found in Vietnamese fish sauce has been identified as Bacillus subtilis. In an enzyme-producing medium with 0% and 8% NaCl concentration, the CN2 strain produced the maximum collagenase activity, 3.07 U/ml and 2.60 U/ml. The strain also produced gelatinase, but the maximum activity was only 1.03 U/ml at 8 h of incubation time and prolonged more than 22 h. Bacillus subtilis CN2, grown slowly in a medium containing 12% NaCl, showed a decreased rate of collagenase activity with a maximum activity of 1.60 U/ml at 18 h of incubation time. The culture supernatant of CN2 strain digested a purified native collagen from rat tail tendon as well as ,s-casein at Met123 -Lys124 position. Therefore The culture supernatant of CN2 can be used to produce healthy foods. [source]


Stimulatory Effect of Procaine on the Growth of Several Microalgae and Cyanobacteria

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2000
TAKAHIRO SUZUKI
Procaine has been used to stimulate plant growth and it has been noted that it also promotes growth of microorganisms. The effect of procaine hydrochloride concentration on the growth rates of several species of microalgae and cyanobacteria was studied under both photoautotropic and heterotrophic growth conditions. Procaine hydrochloride was added to cultures at concentrations over the range 0.01,1000 mg L,1. A stimulating effect of procaine hydrochloride on photoautotrophic growth was observed for the cyanobacteria Anabaena cylindrica and Anabaena variabilis, and for the salt-tolerant green algae Dunaliella primolecta and Dunaliella parva. During active growth in batch culture an increase in growth rate (compared with control culture without procaine hydrochloride) of about 25% was observed at 0.1 mg L,1 of procaine hydrochloride for A. cylindrica. However, procaine hydrochloride was toxic at concentrations of > 10 mg L,1. Simultaneous administration of hydrolysis products of procaine, p -amino-benzoic acid and diethyl aminoethanol, in lieu of procaine hydrochloride, was as effective as procaine in stimulating growth of A. cylindrica. Heterotrophic growth of Chlorella ellipsoidea and Prototheca zopfii was not stimulated by procaine hydrochloride over the concentration range studied (0.1,10 mg L,1). The combined effects of procaine hydrochloride concentration and four other environmental factors (temperature, light intensity, CO2 concentration in the flushing gas and NaCl concentration) on growth rate of D. primolecta was modelled using both a neural network approach and a response surface method. These results indicate that procaine hydrochloride exerts different effects on the growth of microalgal and cyanobacterial cells as functions of dosage, species and culture conditions. [source]


ELECTROSTATIC EFFECTS ON PHYSICAL PROPERTIES OF PARTICULATE WHEY PROTEIN ISOLATE GELS

JOURNAL OF TEXTURE STUDIES, Issue 4 2001
MATTHEW K. McGUFFEY
Physical properties of particulate whey protein isolate gels formed under varying electrostatic conditions were investigated using large strain rheological and microstructural techniques. The two treatment ranges evaluated were adjusting pH (5.2-5.8) with no added NaCl and adjusting the NaCl (0.2-0.6 M) at pH 7. Gels (10% protein w/v) were formed by heating at 80C for 30 min. The large strain properties of fracture strain (,f), fracture stress (,f), and a measure of strain hardening (R0.3) were determined using a torsion method. Gel microstructure was evaluated using scanning electron microscopy (SEM) and gel permeability (Bgel). Overlaying ,f and ,f curves for pH and NaCl treatments demonstrated an overlap where gels of equal ,f and ,f could be formed by adjusting pH or NaCl concentration. The high fracture stress (,f, 23 kPa and ,f, 1.86) pair conditions were pH 5.47 and 0.25 M NaCl, pH 7.0. The low fracture stress (,f, 13 kPa and ,f, 1.90) pair conditions were pH 5.68 and 0.6 M NaCl, pH 7.0. The 0.25 M NaCl, pH 7 treatment demonstrated higher R0.3 values than the pH 5.47 treatment. When the sulfhydryl blocker n-ethylmaleimide was added at 2 mM to the 0.25 M NaCl, pH 7 gel treatment, its rheological behavior was NSD (p>0.05) to the pH 5.47 gel treatment, indicating disulfide bond formation regulated strain hardening. Altering surface charge or counterions, and disulfide bonding, was required to produce gels with similar large strain rheological properties. An increase in gel permeability coincided with an increase in pore size as observed by SEM, independent of rheological properties. This demonstrated that at the length scales investigated, microstructure was not linked to changes in large strain rheological properties. [source]


Nutrient digestibility response to graded dietary levels of sodium chloride in weanling pigs

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 6 2008
Yu-long Yin
Abstract BACKGROUND: Sodium (Na+), chloride (Cl,) and phosphorus (Pi) are involved in a number of metabolic and physiological processes in the body, and these mineral elements must be supplied to the animal via the diet. The intention of this study was to evaluate the effect of dietary supplementation with different levels of sodium chloride (0.1, 0.2, 0.3, 0.4, 0.5 and 0.6% NaCl) on apparent and true P digestibility (APD and TPD) and dry matter (DM), crude protein (CP) and calcium (Ca) digestibility in weanling pigs. RESULTS: Dietary NaCl had a quadratic effect on both APD and TPD (P < 0.05) but not on DM, CP and Ca digestibility (P > 0.05). At an NaCl concentration of 0.41% the APD and TPD values were 41.5 and 53.3% respectively. CONCLUSION: These results suggest that a high level of dietary Na+ may enhance P absorption and improve its digestibility by coupling Na+ transportation to Pi absorption via the energy-requiring Na+/Pi co-transporter. Copyright © 2008 Society of Chemical Industry [source]


Isolation of salt-sensitive mutants from Sinorhizobium meliloti and characterization of genes involved in salt tolerance

LETTERS IN APPLIED MICROBIOLOGY, Issue 3 2004
W. Wei
Abstract Aims:, The purpose of our research is to isolate salt-sensitive mutants and to study the genes involved in salt tolerance of the salt-tolerant bacterium Sinorhizobium meliloti 042BM. Methods:, Wild type S. meliloti 042BM bacteria are able to grow at a NaCl concentration of 0.6 mol l,1. A transposon Tn5-1063a mutagenesis library of S. meliloti 042BM was constructed and eight salt-sensitive mutants were isolated, which were unable to growth on FY plates containing 0.4 mol l,1 NaCl. Significance:, Our interest is to provide information about the mechanism of salt tolerance in bacteria by studying the genes involved in salt tolerance. Here, seven different genes were identified. These genes include omp10 encoding a cell outer membrane protein, relA encoding (p)ppGpp synthetase, greA encoding a transcription cleavage factor, nuoL encoding NADH dehydrogenase I chain L transmembrane protein, a putative nuclease/helicase gene and two unknown genes. Based on these findings, we suggest that the regulation of salt tolerance of S. meliloti 042BM is complex and on several levels. [source]


A comparative study on the corrosion behavior of NdFeB magnets in different electrolyte solutions

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 10 2008
Y. W. Song
Abstract Sintered NdFeB magnets possess excellent magnetic properties. However, the corrosion resistance property of NdFeB is very poor due to its multiphase microstructure consisting of matrix phase Nd2Fe14B, Nd-rich phase, and B-rich phase. The corrosion behavior of NdFeB magnets in sodium hydroxide (NaOH), sodium chloride (NaCl), nitric acid (HNO3), and oxalic acid (H2C2O4) solutions was investigated by immersion and electrochemical tests. HNO3is the strongest corrosive electrolyte compared with the other three solutions. The increase in HNO3concentration can accelerate the corrosion of NdFeB magnets. NaCl belongs to medium corrosion electrolyte. A NaCl concentration of 0.5 M shows the severest corrosive feature in comparison with other concentrations of NaCl solution. NdFeB hardly suffers corrosion in NaOH and H2C2O4solutions owing to the formation of passivation films on the surface of magnets. Based on the corrosion behavior of NdFeB in different electrolytes, the possible corrosion mechanisms are discussed. [source]


Electrostatic Charge Measurement and Charge Neutralization of Fine Aerosol Particles during the Generation Process

PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 5 2005
Chuen-Jinn Tsai
Abstract An aerosol charge analyzer has been constructed to measure the charge distribution of NaCl particles generated in the laboratory. A radioactive electrostatic charge neutralizer utilizing Po-210 was used to neutralize the electrostatic charge of the particles. The atomization technique was used to generate NaCl particles with diameters of 0.2 to 0.8 ,m, while the evaporation and condensation method was adopted to generate particles of 0.01 to 0.2 ,m in diameter. The experimental data demonstrates that the absolute average particle charge depends on the particle diameter, and is higher than that calculated by the Boltzmann charge equilibrium for particles within the range of 0.2 to 0.8 ,m. The charge increases with decreasing NaCl concentration. When these particles are neutralized using the Po-210 neutralizer, it is found that the electrostatic charge reaches the Boltzmann charge equilibrium. For 0.01 to 0.2 ,m NaCl particles generated using the evaporation and condensation method, test results show that the absolute average particle charge is higher than that calculated by the Boltzmann charge equilibrium for particles larger than 0.03 to 0.05 ,m in diameter, while it is lower than that predicted by the Fuchs theory [1], for particles smaller than 0.03 to 0.05 ,m. However, after charge neutralization, particles with diameter above 0.05 ,m reach the Boltzmann charge equilibrium condition, and the charges for particles with diameters of 0.010 to 0.05 ,m, agree well with Fuchs' theory. [source]


Protein self-association in solution: The bovine , -lactoglobulin dimer and octamer

PROTEIN SCIENCE, Issue 11 2003
Michael Gottschalk
Abstract We have used proton magnetic relaxation dispersion (MRD) to study the self-association of bovine , -lactoglobulin variant A (BLG-A) as a function of temperature at pH 4.7 (dimer,octamer equilibrium) and as a function of NaCl concentration at pH 2.5 (monomer,dimer equilibrium). The MRD method identifies coexisting oligomers from their rotational correlation times and determines their relative populations from the associated dispersion amplitudes. From MRD-derived correlation times and hydrodynamic model calculations, we confirm that BLG-A dimers associate to octamers below room temperature. The tendency for BLG-A dimers to assemble into octamers is found to be considerably weaker than in previous light scattering studies in the presence of buffer salt. At pH 2.5, the MRD data are consistent with an essentially complete transition from monomers in the absence of salt to dimers in 1 M NaCl. Because of an interfering relaxation dispersion from nanosecond water exchange, we cannot determine the oligomer populations at intermediate salt concentrations. This nanosecond dispersion may reflect intersite exchange of water molecules trapped inside the large binding cavity of BLG-A. [source]


Electrochemical bleaching of kraft bagasse pulp using a new cell design

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2010
El-Sayed Z. El-Ashtoukhy
Abstract In situ single-stage electrochemical bleaching of kraft bagasse pulp was carried out in a cylindrical agitated vessel fitted with four graphite rod anodes and a cylindrical stainless steel screen cathode, using NaCl as an electrolyte. The effect of current density, pH, NaCl concentration, impeller rotational speed, temperature, and pulp consistency on the rate of bleaching was studied. It was found that the rate of bleaching increased with increasing current density, NaCl concentration, and temperature and decreased with increasing pH and pulp consistency. The effect of temperature was found to fit Arrhenius equation with an activation energy of 0.515,kcal/mol, which denotes a diffusion-controlled mechanism. Energy consumption (EC) calculation showed that EC ranged from 0.225 to 3.11,kWh/kg dry pulp depending on the current density. The strength of bleached pulp was little affected by bleaching lying within an acceptable range. Le blanchiment électrochimique à une étape in situ de pâte de bagasse kraft a été effectué dans un réservoir cylindrique agité doté d'une anode sous forme de tige au graphite (4) et de cathode sous forme de treillis cylindrique en acier inoxydable, utilisant le NaCl comme électrolyte. L'effet de la densité du courant, du pH, de la concentration de NaCl, de la vélocité rotationnelle de la roue et de la température de la consistance de la pâte sur le taux de blanchiment a été étudié. L'effet de la température s'est avéré s'inscrire dans l'équation d'Arrhenius avec une énergie d'activation de 0,515 kcal/mol, ce qui dénote un mécanisme de diffusion contrôlé. Le calcul de consommation d'énergie montre que la consommation d'énergie se situe de 0,225 à 3,11,kWh/kg de pâte sèche, selon la densité du courant. La résistance de la pâte blanchie est peu touchée par le blanchiment et se situe en deçà de la plage acceptable. [source]


Stage-specific effects of osmolarity of a culture medium on development of pig oocytes and miniature pig somatic cell nuclear transfer embryos activated by ultrasound treatment

ANIMAL SCIENCE JOURNAL, Issue 4 2010
Yamato MIZOBE
ABSTRACT Whether high osmolarity of a culture medium at the early culture stage affects the development of pig oocytes and miniature pig somatic cell nuclear transfer (SCNT) embryos activated by ultrasound was examined. When oocytes were cultured in modified porcine zygote medium-3 (mPZM-3) with increased NaCl to 138 mmol/L (mPZM-3+NaCl; 326 mOsm) or 50 mmol/L sucrose (mPZM-3+sucrose; 318 mOsm) for the first 2 days and then cultured in normal mPZM-3 (273 mOsm) for 5 days, the cleavage and blastocyst formation rates were significantly (P < 0.05) higher than those of oocytes cultured in mPZM-3 for 7 days. The cleavage and blastocyst formation rates of SCNT embryos cultured in mPZM-3+NaCl for the first 2 days and then cultured in mPZM-3 for 5 days were also significantly (P < 0.05) higher than those of embryos cultured in mPZM-3 for 7 days. These results showed that the high osmolarity of a culture medium induced by increasing NaCl concentration during the first 2 days improves the development of pig oocytes and miniature pig SCNT embryos activated by ultrasound. [source]


Salinity-induced changes in essential oil, pigments and salts accumulation in sweet basil (Ocimum basilicum) in relation to alterations of morphological development

ANNALS OF APPLIED BIOLOGY, Issue 2 2010
N. Bernstein
The objective of the project was to study salinity-induced effects on essential oil, pigments and salts accumulation in sweet basil (Ocimum basilicum, the cultivar Perrie) in relation to the alteration of plant morphological development and yield production. Hydroponically grown plants were exposed to one of six NaCl concentrations (1, 25, 50, 75, 100 and 130 mM NaCl). Inhibitory effects of salinity on biomass production of the shoot and the root, and area of individual leaves were apparent already under cultivation with 25 mM NaCl. Elevation of salinity from 1 to 100 mM NaCl induced 63% and 61% reductions in fresh and dry herb biomass production, respectively. The stress-induced reduction of foliage biomass sourced mainly from inhibition of leaf area development rather than reduction of internode and leaf number. Cl and Na concentrations in the leaves, stems and roots increased with elevation of NaCl concentration in the cultivation solution. While the extent of Cl accumulation was leaves>stems>roots, Na was largely excluded from the leaves and was preferentially accumulated in roots and the stems, potentially accounting for the moderate sensitivity of the leaf tissue to salinity. Salt stress increased the contents of essential oil and carotenoids in the leaves that may further account for the moderate sensitivity of sweet basil to salinity and suggest a potential for agro-industrial production. A twofold increase in both carotenoid concentration and the percent of essential oil in the fresh tissue was observed by elevation of the salinity from 1 to 130 mM NaCl. Overall, the stress induced increase of the percent of essential oil in the tissue in the salinity range 1,75 mM NaCl was about 50%, and thereby compensated for the similar reduction of biomass production in this salinity range, so that oil production on per plant basis was not reduced by salinity. [source]


Effect of sodium chloride on the formation and stability of n-dodecane nanoemulsions by the PIT method

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2010
Jeffery Chin Long Liew
Abstract This paper provides a fundamental study of the effect of sodium chloride on the formation and stability of n-dodecane/nonionic surfactant (Brij30)/NaCl nanoemulsions produced by the phase inversion temperature (PIT) method. Nanoemulsions are an emulsion system containing droplets from 20 to 200 nm and widely used in cosmetics and pharmaceutical industries. The PIT method was chosen due to its low energy and surfactant usage to produce the nanoemulsions by heating and quenching an emulsion system. The changes of conductivity with temperatures were continuously monitored to determine phase inversion, and are found to be the same in low surfactant concentrations. PIT point was found to decrease with NaCl concentration especially from 5 to 7 wt% Brij30. At the storage temperature (20 °C), the initial droplet size decreases with NaCl concentration; however, the decrement only occurs from 4 to 7 wt% Brij30 while no nanoemulsions can be produced at 8 wt%. By adding salt, the surfactant concentration needed for the most stable nanoemulsions is reduced to 6 wt% from 7 wt%. Therefore, similar stable nanoemulsions can be produced with less surfactant in a brine system. Furthermore, most of the ageing brine-continuous nanoemulsions could be reproduced to their freshly prepared state by heating process but not for the most stable nanoemulsions. Copyright © 2010 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Titration of poly(dA-dT) · poly(dA-dT) in solution at variable NaCl concentration

BIOPOLYMERS, Issue 2 2004
Marta Airoldi
Abstract CD and uv absorption data showed that high molecular weight poly(dA-dT) · poly(dA-dT), at 298 K, undergoes an acid-induced transition from B-double helix to random coil in NaCl solutions of different concentrations, ranging from 0.005 to 0.600M. Similarly, titration of the polynucleotide with a strong base causes duplex-to-single strands transition. The base- and acid-induced transitions were both reversible by back-titration (with an acid or, respectively, with a base): the apparent pKa were the same in both directions. However, the number of protons per titratable site (adenine N1) required to reach half-denaturation was in great excess over the stoichiometric value; to a much larger extent, the same effect was observed also for the deprotonation of the N3H sites of thymine. Moreover, in the basic denaturation experiments, at low salt concentrations ([NaCl],0.300M) less acid than calculated was needed to back-titrate the base excess to half-denaturation. Both effects could be qualitatively justified on the basis of the counterion condensation theory of polyelectrolytes and considering the energy barrier created by the negatively charged phosphodiester groups to the penetration of the OH, ions inside the double helix and the screening effect of the Na+ ions on such charges, in the deprotonation experiments. © 2004 Wiley Periodicals, Inc. Biopolymers, 2004 [source]


Lysozyme-lysozyme self-interactions as assessed by the osmotic second virial coefficient: Impact for physical protein stabilization

BIOTECHNOLOGY JOURNAL, Issue 9 2009
Virginie Le Brun
Abstract The purpose of the presented study is to understand the physicochemical properties of proteins in aqueous solutions in order to identify solution conditions with reduced attractive protein-protein interactions, to avoid the formation of protein aggregates and to increase protein solubility. This is assessed by measuring the osmotic second virial coefficient (B22), a parameter of solution non-ideality, which is obtained using self-interaction chromatography. The model protein is lysozyme. The influence of various solution conditions on B22 was investigated: protonation degree, ionic strength, pharmaceutical relevant excipients and combinations thereof. Under acidic solution conditions B22 is positive, favoring protein repulsion. A similar trend is observed for the variation of the NaCl concentration, showing that with increasing the ionic strength protein attraction is more likely. B22 decreases and becomes negative. Thus, solution conditions are obtained favoring attractive protein-protein interactions. The B22 parameter also reflects, in general, the influence of the salts of the Hofmeister series with regard to their salting-in/salting-out effect. It is also shown that B22 correlates with protein solubility as well as physical protein stability. [source]


The individual tolerance concept is not the sole explanation for the probit dose-effect model,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2000
Michael C. Newman
Abstract Predominant methods for analyzing dose- or concentration-effect data (i.e., probit analysis) are based on the concept of individual tolerance or individual effective dose (IED, the smallest characteristic dose needed to kill an individual). An alternative explanation (stochasticity hypothesis) is that individuals do not have unique tolerances: death results from stochastic processes occurring similarly in all individuals. These opposing hypotheses were tested with two types of experiments. First, time to stupefaction (TTS) was measured for zebra fish (Brachydanio rerio) exposed to benzocaine. The same 40 fish were exposed during five trials to test if the same order for TTS was maintained among trials. The IED hypothesis was supported with a minor stochastic component being present. Second, eastern mosquitofish (Gambusia holbrooki) were exposed to sublethal or lethal NaCl concentrations until a large portion of the lethally exposed fish died. After sufficient time for recovery, fish sublethally exposed and fish surviving lethal exposure were exposed simultaneously to lethal NaCl concentrations. No statistically significant effect was found of previous exposure on survival time but a large stochastic component to the survival dynamics was obvious. Repetition of this second type of test with pentachlorophenol also provided no support for the IED hypothesis. We conclude that neither hypothesis alone was the sole or dominant explanation for the lognormal (probit) model. Determination of the correct explanation (IED or stochastic) or the relative contributions of each is crucial to predicting consequences to populations after repeated or chronic exposures to any particular toxicant. [source]