Aromatic Nucleophilic Substitution Reaction (aromatic + nucleophilic_substitution_reaction)

Distribution by Scientific Domains


Selected Abstracts


Solvent effects on kinetics of an aromatic nucleophilic substitution reaction in mixtures of an ionic liquid with molecular solvents and prediction using artificial neural networks

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 3 2009
Aziz Habibi-Yangjeh
Kinetics of the reaction between 1-chloro-2,4-dinitrobenzene and aniline was studied in mixtures of 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO4]) with methanol, chloroform, and dimethylsulfoxide at 25°C. Single-parameter correlations of log kA versus normalized polarity parameter (ENT), hydrogen-bond acceptor basicity (,), hydrogen-bond donor acidity (,), and dipolarity/polarizability (,*) of media do not give acceptable results. Multiparameter linear regression (MLR) of log kA versus the solvatochromic parameters demonstrates that the reaction rate constant increases with ENT, ,*, and , and decreases with , parameter. To predict accurately solvent effects on the rate constant, optimized artificial neural network with three inputs (including ,, ,*, and , parameters) was applied for prediction of the log kA values in the prediction set. It was found that properly selected and trained neural network could fairly represent the dependence of the reaction rate constant on solvatochromic parameters. Mean percent deviation of 5.023 for the prediction set by the MLR model should be compared with the value of 0.343 by the artificial neural network model. These improvements are due to the fact that the reaction rate constant shows nonlinear correlations with the solvatochromic parameters. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 153,159, 2009 [source]


Resistive switching polymer materials based on poly(aryl ether)s containing triphenylamine and 1,2,4-triazole moieties

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 20 2008
Kun-Li Wang
Abstract A series of poly(aryl ether)s were successfully prepared via aromatic nucleophilic substitution reaction from various bisphenols and a novel bipolar aryl difluoride monomer containing electron-donor triphenylamine and electron-acceptor 1,2,4-triazole moieties. The poly(aryl ether)s exhibited excellent solubility in organic solvents such as dimethylformamide, chloroform, and tetrahydrofuran at room temperature. The poly(aryl ether)s showed high thermal stability with Td10 higher than 500 °C and glass transition temperatures (Tg) higher than 187 °C. The thin films of the poly(aryl ether)s indicated bistable resistive switching behavior with ON/OFF current ratios as high as 103. The switching on and switching off bias voltages of the poly(aryl ether)s were affected by the bisphenol moiety. The good resistive switching behavior of the poly(aryl ether)s made them promising candidates for future nonvolatile memory applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6861,6871, 2008 [source]


Synthesis, properties, and sulfonation of novel dendritic multiblock copoly(ether-sulfone)

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 19 2008
Sumiko Matsumura
Abstract Multiblock copoly(ether-sulfone)s (PESs) bearing anchor units for the construction of dendritic blocks were synthesized by two-step reactions: (1) synthesis of PES block with both phenoxide end-groups; (2) chain extension and end-capping of the block by use of excess novel hexafunctional agent, hexakis(4-(4-fluorophenylsulfonyl)phenyl)benzene. The optimum average block length (n) and amount (x) of the hexafunctional agent used for the synthesis of high-molecular-weight PES without crosslinking were n = 26 and x = 2.6 equiv, respectively. The dendritic blocks in the PES were constructed by the aromatic nucleophilic substitution reaction of the activated aromatic fluoride groups on the anchor units using 4-tritylbenzenethiol. The clean substitution of the fluoride groups in the PES was confirmed by 1H NMR and 19F NMR. Three sulfonic acid groups were introduced on the pendant phenyl rings of the trityl groups in the PES by the reaction with chlorosulfonic acid. This is the first example of a dendritic PES bearing clusters of sulfonic acid groups only on the dendritic blocks. Cast films of presulfonated dendritic PES were strong and flexible, however, the membranes of sulfonated dendritic PES were brittle so that the conductivity measurements were not performed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6365,6375, 2008 [source]


Tuning the Optoelectronic Properties of Carbazole/Oxadiazole Hybrids through Linkage Modes: Hosts for Highly Efficient Green Electrophosphorescence

ADVANCED FUNCTIONAL MATERIALS, Issue 2 2010
Youtian Tao
Abstract A series of bipolar transport host materials: 2,5-bis(2-(9H -carbazol-9-yl)phenyl)-1,3,4-oxadiazole (o -CzOXD) (1), 2,5-bis(4-(9H -carbazol-9-yl)phenyl)-1,3,4-oxadiazole (p -CzOXD) (2), 2,5-bis(3-(9H -carbazol-9-yl)phenyl)-1,3,4-oxadiazole (m -CzOXD) (3) and 2-(2-(9H -carbazol-9-yl)phenyl)-5-(4-(9H-carbazol-9-yl)phenyl)-1,3,4-oxadiazole (op -CzOXD) (4) are synthesized through simple aromatic nucleophilic substitution reactions. The incorporation of the oxadiazole moiety greatly improves their morphological stability, with Td and Tg in the range of 428,464,°C and 97,133,°C, respectively. The ortho and meta positions of the 2,5-diphenyl-1,3,4-oxadiazole linked hybrids (1 and 3) show less intramolecular charge transfer and a higher triplet energy compared to the para-position linked analogue (2). The four compounds exhibit similar LUMO levels (2.55,2.59,eV) to other oxadiazole derivatives, whereas the HOMO levels vary in a range from 5.55,eV to 5.69,eV, depending on the linkage modes. DFT-calculation results indicate that 1, 3, and 4 have almost complete separation of their HOMO and LUMO levels at the hole- and electron-transporting moieties, while 2 exhibits only partial separation of the HOMO and LUMO levels possibly due to intramolecular charge transfer. Phosphorescent organic light-emitting devices fabricated using 1,4 as hosts and a green emitter, Ir(ppy)3 or (ppy)2Ir(acac), as the guest exhibit good to excellent performance. Devices hosted by o -CzOXD (1) achieve maximum current efficiencies (,c) as high as 77.9,cd A,1 for Ir(ppy)3 and 64.2,cd A,1 for (ppy)2Ir(acac). The excellent device performance may be attributed to the well-matched energy levels between the host and hole-transport layers, the high triplet energy of the host and the complete spatial separation of HOMO and LUMO energy levels. [source]