Arithmetic Operations (arithmetic + operations)

Distribution by Scientific Domains


Selected Abstracts


SIMD Optimization of Linear Expressions for Programmable Graphics Hardware

COMPUTER GRAPHICS FORUM, Issue 4 2004
Chandrajit Bajaj
Abstract The increased programmability of graphics hardware allows efficient graphical processing unit (GPU) implementations of a wide range of general computations on commodity PCs. An important factor in such implementations is how to fully exploit the SIMD computing capacities offered by modern graphics processors. Linear expressions in the form of, where A is a matrix, and and are vectors, constitute one of the most basic operations in many scientific computations. In this paper, we propose a SIMD code optimization technique that enables efficient shader codes to be generated for evaluating linear expressions. It is shown that performance can be improved considerably by efficiently packing arithmetic operations into four-wide SIMD instructions through reordering of the operations in linear expressions. We demonstrate that the presented technique can be used effectively for programming both vertex and pixel shaders for a variety of mathematical applications, including integrating differential equations and solving a sparse linear system of equations using iterative methods. [source]


Algebraic preconditioning versus direct solvers for dense linear systems as arising in crack propagation problems

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 2 2005
Erik Bängtsson
Abstract Preconditioned iterative solution methods are compared with the direct Gaussian elimination method to solve dense linear systems Ax=b which originate from problems, discretized by boundary element method (BEM) techniques. Numerical experiments are presented and compared with the direct solution method available in a commercial BEM package, which show that the preconditioned iterative schemes are highly competitive with respect to both arithmetic operations required and memory demands. Copyright © 2004 John Wiley & Sons, Ltd. [source]


On a quadrature algorithm for the piecewise linear wavelet collocation applied to boundary integral equations

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 11 2003
Andreas Rathsfeld
Abstract In this paper, we consider a piecewise linear collocation method for the solution of a pseudo-differential equation of order r=0, ,1 over a closed and smooth boundary manifold. The trial space is the space of all continuous and piecewise linear functions defined over a uniform triangular grid and the collocation points are the grid points. For the wavelet basis in the trial space we choose the three-point hierarchical basis together with a slight modification near the boundary points of the global patches of parametrization. We choose linear combinations of Dirac delta functionals as wavelet basis in the space of test functionals. For the corresponding wavelet algorithm, we show that the parametrization can be approximated by low-order piecewise polynomial interpolation and that the integrals in the stiffness matrix can be computed by quadrature, where the quadrature rules are composite rules of simple low-order quadratures. The whole algorithm for the assembling of the matrix requires no more than O(N [logN]3) arithmetic operations, and the error of the collocation approximation, including the compression, the approximative parametrization, and the quadratures, is less than O(N,(2,r)/2). Note that, in contrast to well-known algorithms by Petersdorff, Schwab, and Schneider, only a finite degree of smoothness is required. In contrast to an algorithm of Ehrich and Rathsfeld, no multiplicative splitting of the kernel function is required. Beside the usual mapping properties of the integral operator in low order Sobolev spaces, estimates of Calderón,Zygmund type are the only assumptions on the kernel function. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Fast direct solvers for Poisson equation on 2D polar and spherical geometries

NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, Issue 1 2002
Ming-Chih Lai
Abstract A simple and efficient class of FFT-based fast direct solvers for Poisson equation on 2D polar and spherical geometries is presented. These solvers rely on the truncated Fourier series expansion, where the differential equations of the Fourier coefficients are solved by the second- and fourth-order finite difference discretizations. Using a grid by shifting half mesh away from the origin/poles, and incorporating with the symmetry constraint of Fourier coefficients, the coordinate singularities can be easily handled without pole condition. By manipulating the radial mesh width, three different boundary conditions for polar geometry including Dirichlet, Neumann, and Robin conditions can be treated equally well. The new method only needs O(MN log2N) arithmetic operations for M × N grid points. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 56,68, 2002 [source]