Argonne National Laboratory (argonne + national_laboratory)

Distribution by Scientific Domains


Selected Abstracts


Imaging of cochlear tissue with a grating interferometer and hard X-rays

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 12 2009
Claus-Peter Richter
Abstract This article addresses an important current development in medical and biological imaging: the possibility of imaging soft tissue at resolutions in the micron range using hard X-rays. Challenging environments, including the cochlea, require the imaging of soft tissue structure surrounded by bone. We demonstrate that cochlear soft tissue structures can be imaged with hard X-ray phase contrast. Furthermore, we show that only a thin slice of the tissue is required to introduce a large phase shift. It is likely that the phase contrast image of the soft tissue structures is sufficient to image the structures even if surrounded by bone. For the present set of experiments, structures with low-absorption contrast have been visualized using in-line phase contrast imaging and a grating interferometer. The experiments have been performed at the Advanced Photon Source at Argonne National Laboratories, a third generation source of synchrotron radiation. The source provides highly coherent X-ray radiation with high-photon flux (>1012 photons/s) at high-photon energies (5,70 keV). Radiographic and light microscopy images of the gerbil cochlear slice samples were compared. It has been determined that a 20-,m thick tissue slice induces a phase shift between 1/3, and 2/3,. Microsc. Res. Tech., 2009. © 2009 Wiley-Liss, Inc. [source]


Monitoring Subsurface Contamination Using Tree Branches

GROUND WATER MONITORING & REMEDIATION, Issue 1 2007
Gayathri Gopalakrishnan
This paper proposes a method of assessing the distribution of chlorinated solvents in soil and ground water using tree branches. Sampling branches is a potentially more cost-effective and easier method than sampling tree cores, with less risk of damage to the tree. This approach was tested at Argonne National Laboratory, where phytoremediation is being used to remove tetrachloroethene (PCE), trichloroethene (TCE), and carbon tetrachloride (CCl4) from soil and ground water. The phytoremediation system consists of shallow-rooted willows planted in an area with contaminated soil and deep-rooted poplars planted in an area with clean soil and contaminated ground water. Branch samples were collected from 126 willows and 120 poplars. Contaminant concentrations from 31 soil borings and six monitoring wells were compared to those from branches of adjacent trees. Regression equations with correlation coefficients of at least 0.89 were obtained, which were found to be chemical specific. Kriged profiles of TCE concentration based on soil and willow branch data were developed and showed good agreement. Profiles based on ground water data could not be developed due to lack of sufficient monitoring wells for a meaningful statistical analysis. An analytical model was used to simulate TCE concentrations in tree branches from soil concentrations; the diffusion coefficient for TCE in the tree was used as the fitting parameter and the best-fit value was two orders of magnitude greater than literature values. This work indicates that tree branch sampling is a useful approach to assess contaminant distribution and potentially to determine where to locate monitoring wells or perform detailed soil analysis. Further research is necessary prior to using this method as a quantitative monitoring tool for soil and ground water. [source]


Ultra-small-angle X-ray scattering at the Advanced Photon Source

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3 2009
Jan Ilavsky
The design and operation of a versatile ultra-small-angle X-ray scattering (USAXS) instrument at the Advanced Photon Source (APS) at Argonne National Laboratory are presented. The instrument is optimized for the high brilliance and low emittance of an APS undulator source. It has angular and energy resolutions of the order of 10,4, accurate and repeatable X-ray energy tunability over its operational energy range from 8 to 18,keV, and a dynamic intensity range of 108 to 109, depending on the configuration. It further offers quantitative primary calibration of X-ray scattering cross sections, a scattering vector range from 0.0001 to 1,Å,1, and stability and reliability over extended running periods. Its operational configurations include one-dimensional collimated (slit-smeared) USAXS, two-dimensional collimated USAXS and USAXS imaging. A robust data reduction and data analysis package, which was developed in parallel with the instrument, is available and supported at the APS. [source]


A parallel program using SHELXD for quick heavy-atom partial structural solution on high-performance computers

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2007
Zheng-Qing Fu
A parallel algorithm has been designed for SHELXD to solve the heavy-atom partial structures of protein crystals quickly. Based on this algorithm, a program has been developed to run on high-performance multiple-CPU Linux PCs, workstations or clusters. Tests on the 32-CPU Linux cluster at SER-CAT, APS, Argonne National Laboratory, show that the parallelization dramatically speeds up the process by a factor of roughly the number of CPUs applied, leading to reliable and instant heavy-atom sites solution, which provides the practical opportunity to employ heavy-atom search as an alternative tool for anomalous scattering data quality evaluation during single/multiple-wavelength anomalous diffraction (SAD/MAD) data collection at synchrotron beamlines. [source]


A new heat balance for flow boiling

AICHE JOURNAL, Issue 8 2007
Francisco J. Collado
Abstract Recently, one of the authors suggested calculating void fraction, an essential element in thermal-hydraulics, working with the "thermodynamic" quality instead of the usual "flow" quality. However, the standard heat balance is currently stated as a function of the "flow" quality. Therefore, we should search a new energy balance between the mixture enthalpy, based on "thermodynamic" quality, and the absorbed heat. This work presents the results of such analysis based on accurate measurements of the axial profile of the cross-sectional average void fraction in the region of boiling with subcooling for water at medium and high pressures taken by Moscow Power Institute (MPI) and Argonne National Laboratory (ANL). As main results, we find that, under uniform heat flux, the mixture enthalpy suffers an abrupt reduction of its slope upon passing saturation point, and a new slip ratio could balance heat with such mixture enthalpy. © 2007 American Institute of Chemical Engineers AIChE J, 2007 [source]


Zr and Ba edge phenomena in the scintillation intensity of fluorozirconate-based glass-ceramic X-ray detectors

JOURNAL OF SYNCHROTRON RADIATION, Issue 3 2007
Bastian Henke
The energy-dependent scintillation intensity of Eu-doped fluorozirconate glass-ceramic X-ray detectors has been investigated in the energy range from 10 to 40,keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu-doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl2 nanocrystals therein. The X-ray excited scintillation is mainly due to the 5d,4f transition of Eu2+ embedded in the BaCl2 nanocrystals; Eu2+ in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl2. The scintillation intensity is investigated as a function of the X-ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X-ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4,keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K -edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics. [source]


Measurement of the speed of X-rays

JOURNAL OF SYNCHROTRON RADIATION, Issue 2 2002
E. Zolotoyabko
X-ray pulses from the Advanced Photon Source at Argonne National Laboratory were used to measure the speed of X-rays in the energy range between 21 and 60,keV. An LiNbO3 -based 0.58,GHz surface acoustic wave device served as a temporal analyzer in the stroboscopic time-resolved diffraction measurements. By synchronizing the surface acoustic wave excitation and periodic X-ray illumination of the LiNbO3 crystal, the temporal modifications in the LiNbO3 diffraction profiles could be followed and the time points of X-ray arrivals at the analyzer position for different analyzer to storage ring distances determined. The speed of the X-rays was determined as the ratio of measured spacings and corresponding delay time intervals. Within the experimental error bars, the obtained X-ray velocities converged to the tabulated constant for the speed of light in a vacuum. [source]


The Structure of Yttrialite and Its Identification Using Laboratory and Synchrotron-Based Powder X-Ray Diffraction

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2009
William J. Heward
A highly crystalline sample of the impurity stabilized phase y -Y2Si2O7, generally known as yttrialite, has been formed from the melt of a glass with a nominal composition of 62(SiO2),10(Al2O3),28(Y2O3) mol%. Powder X-ray diffraction patterns were collected using in-house instrumentation and the 11-BM diffractometer at the Advanced Photon Source, Argonne National Laboratory, Argonne, IL. Rietveld refinements were carried out on the patterns using two structural models. On patterns collected using in-house instrumentation the correct structure assignment was difficult to determine; however, the extremely high-quality data afforded by the 11-BM instrument showed conclusively that the sample was found to crystallize in the monoclinic system (SG=P21/m) with lattice parameters a=5.03032(6), b=8.06892(6), c=7.33620(6) Å, and ,=108.673(1). Furthermore, simulations have shown that it is likely that this structure model can be used to describe natural yttrialite or yttrialite that is formed at low temperatures, though the possibility that such materials are paracrystalline is also discussed. [source]


Excited-state molecular structures captured by X-ray transient absorption spectroscopy: a decade and beyond

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 2 2010
Lin X. Chen
Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes have been studied in disordered media from homogeneous solutions to heterogeneous solution,solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled. [source]


Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of macrophage growth locus A (MglA) protein from Francisella tularensis

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 5 2010
Priadarsini Subburaman
Francisella tularensis, a potential bioweapon, causes a rare infectious disease called tularemia in humans and animals. The macrophage growth locus A (MglA) protein from F. tularensis associates with RNA polymerase to positively regulate the expression of multiple virulence factors that are required for its survival and replication within macrophages. The MglA protein was overproduced in Escherichia coli, purified and crystallized. The crystals diffracted to 7.5,Å resolution at the Advanced Photon Source, Argonne National Laboratory and belonged to the hexagonal space group P61 or P65, with unit-cell parameters a = b = 125, c = 54,Å. [source]


Expression, crystallization and preliminary crystallographic studies of a novel bifunctional N -­acetylglutamate synthase/kinase from Xanthomonas campestris homologous to vertebrate N -acetylglutamate synthase

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 12 2006
Dashuang Shi
A novel N -acetylglutamate synthase/kinase bifunctional enzyme of arginine biosynthesis that was homologous to vertebrate N -acetylglutamate synthases was identified in Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the hexagonal space group P6222, with unit-cell parameters a = b = 134.60, c = 192.11,Å, and diffract to about 3.0,Å resolution. Selenomethionine-substituted recombinant protein was produced and selenomethionine substitution was verified by mass spectroscopy. Multiple anomalous dispersion (MAD) data were collected at three wavelengths at SER-CAT, Advanced Photon Source, Argonne National Laboratory. Structure determination is under way using the MAD phasing method. [source]