Arginine Analogue (arginine + analogue)

Distribution by Scientific Domains


Selected Abstracts


Design and Synthesis of a New Class of Arginine Analogues with an Improved Anion Binding Site in the Side Chain.

CHEMINFORM, Issue 26 2005
Carsten Schmuck
Abstract For Abstract see ChemInform Abstract in Full Text. [source]


Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant

MOLECULAR MICROBIOLOGY, Issue 6 2001
Wenli Yang
Protein farnesylation is important for a number of physiological processes, including proliferation and cell morphology. The Schizosaccharomyces pombe mutant, cpp1,, defective in farnesylation, exhibits distinct phenotypes, including morphological changes and sensitivity to the arginine analogue, canavanine. In this work, we report a novel phenotype of this mutant, enrichment of G0/G1 phase cells. This phenotype results mainly from the inability to farnesylate the Rheb G-protein, as normal cell cycle progression can be restored to the mutant by expressing a mutant form of SpRheb (SpRheb-CVIL) that can bypass farnesylation. In contrast, a farnesylation-defective mutant of SpRheb (SpRheb-SVIA) is incapable of restoring the normal cell cycle profile to the cpp1, mutant. Inhibition of SpRheb expression leads to the accumulation of cells at the G0/G1 phase of the cell cycle. This growth arrest phenotype of the sprheb, disruption can be complemented by the introduction of wild-type sprheb+. The complementation is dependent on farnesylation, as the farnesylation-defective SpRheb-SVIA mutant is incapable of complementing the sprheb, disruption. Other mutants of SpRheb, E40K and S20N, are also incapable of complementing the sprheb, disruption. Furthermore, efficient complementation can be obtained by the expression of human Rheb but not Saccharomyces cerevisiae Rheb. Our findings suggest that protein farnesylation is important for cell cycle progression of S. pombe cells and that farnesylated SpRheb is critical in this process. [source]


Asymmetric dimethylarginine may be a missing link between cardiovascular disease and chronic kidney disease (Review Article)

NEPHROLOGY, Issue 6 2007
SEIJI UEDA
SUMMARY: Decreased nitric oxide (NO) production and/or impaired NO bioavailability may occur in patients with chronic kidney disease (CKD), and could contribute to the elevation of blood pressure, cardiovascular disease (CVD) and the progression of renal injury in these patients. However, the underlying molecular mechanisms for reduced NO action in patients with CKD remains to be elucidated. Asymmetric dimethylarginine (ADMA) is a naturally occurring l -arginine analogue found in plasma and various types of tissues, acting as an endogenous NO synthase inhibitor in vivo. Further, plasma level of ADMA is elevated in patients with CKD and found to be a strong biomarker or predictor for future cardiovascular events. In addition, plasma level of ADMA could predict the progression of renal injury in these patients as well. These findings suggest that elevation of ADMA may be a missing link between CVD and CKD. In this review, we discuss the molecular mechanisms for the elevation of ADMA and its pathophysiological role for CVD in high-risk patients, especially focusing on patients with CKD. [source]


Structure,function relationship of novel X4 HIV-1 entry inhibitors , L- and D-arginine peptide-aminoglycoside conjugates

FEBS JOURNAL, Issue 24 2007
Ravi Hegde
We present the design, synthesis, anti-HIV-1 and mode of action of neomycin and neamine conjugated at specific sites to arginine 6- and 9-mers d - and l -arginine peptides (APACs). The d -APACs inhibit the infectivity of X4 HIV-1 strains by one or two orders of magnitude more potently than their respective l -APACs. d -arginine conjugates exhibit significantly higher affinity towards CXC chemokine receptor type 4 (CXCR4) than their l -arginine analogs, as determined by their inhibition of monoclonal anti-CXCR4 mAb 12G5 binding to cells and of stromal cell-derived factor 1, (SDF-1,)/CXCL12 induced cell migration. These results indicate that APACs inhibit X4 HIV-1 cell entry by interacting with CXCR4 residues common to glycoprotein 120 and monoclonal anti-CXCR4 mAb 12G5 binding. d -APACs readily concentrate in the nucleus, whereas the l -APACs do not. 9-mer- d -arginine analogues are more efficient inhibitors than the 6-mer- d -arginine conjugates and the neomycin- d -polymers are better inhibitors than their respective neamine conjugates. This and further structure,function studies of APACs may provide new target(s) and lead compound(s) of more potent HIV-1 cell entry inhibitors. [source]