Home About us Contact | |||
Arachidonic Acid (arachidonic + acid)
Terms modified by Arachidonic Acid Selected AbstractsActions of Arachidonic Acid on Contractions and Associated Electrical Activity in Guinea-Pig Isolated Ventricular MyocytesEXPERIMENTAL PHYSIOLOGY, Issue 4 2001M. A. Mamas The actions of arachidonic acid (AA) were investigated in guinea-pig isolated ventricular myocytes. Exposure of myocytes to 10 ,M AA reduced the amplitude of contractions and calcium transients accompanying action potentials at a frequency of 1 Hz. AA (10 ,M) also reduced the amplitude of calcium currents recorded under voltage-clamp conditions. The suppression of contraction by AA was not prevented by either 10 ,M trihydroindomethicin (to inhibit cyclo-oxygenase) or 10 ,M ETYA (5,8,11,14-eicosatetraynoic acid, to inhibit AA metabolising enzymes), showing that the actions of AA appeared not to be mediated by these metabolites. The reduction of contraction by 10 ,M AA was also not prevented by the protein kinase C inhibitor, Ro31-8220 (1 ,M), showing that this pathway appeared not to be required for the observed effect. Direct effects of AA may be involved. A further action of 10 ,M AA was to suppress spontaneous electrical activity induced by either the ,-adrenergic agonist isoprenaline or the Na+ pump inhibitor, ouabain. This effect of AA on spontaneous activity might be associated with the observed reduction of calcium entry through L-type calcium channels, although additional effects of AA on calcium release from the sarcoplasmic reticulum might also be involved. [source] Alcohol-Induced Neurodegeneration: When, Where and Why?ALCOHOLISM, Issue 2 2004Fulton T. Crews Abstract: This manuscript reviews the proceedings of a symposium organized by Drs. Antonio Noronha and Fulton Crews presented at the 2003 Research Society on Alcoholism meeting. The purpose of the symposium was to examine recent findings on when alcohol induced brain damage occurs, e.g., during intoxication and/or during alcohol withdrawal. Further studies investigate specific brain regions (where) and the mechanisms (why) of alcoholic neurodegeneration. The presentations were (1) Characterization of Synaptic Loss in Cerebella of Mature and Senescent Rats after Lengthy Chronic Ethanol Consumption, (2) Ethanol Withdrawal Both Causes Neurotoxicity and Inhibits Neuronal Recovery Processes in Rat Organotypic Hippocampal Cultures, (3) Binge Drinking-Induced Brain Damage: Genetic and Age Related Effects, (4) Binge Ethanol-Induced Brain Damage: Involvement of Edema, Arachidonic Acid and Tissue Necrosis Factor , (TNF,), and (5) Cyclic AMP Cascade, Stem Cells and Ethanol. Taken together these studies suggest that alcoholic neurodegeneration occurs through multiple mechanisms and in multiple brain regions both during intoxication and withdrawal. [source] Regulation of Exocytosis in Chromaffin Cells by Trans -Insertion of Lysophosphatidylcholine and Arachidonic Acid into the Outer Leaflet of the Cell MembraneCHEMBIOCHEM, Issue 12 2006Christian Amatore Prof. Abstract Vesicular exocytosis is an important complex process in the communication between cells in organisms. It controls the release of chemical and biochemical messengers stored in an emitting cell. In this report, exocytosis is studied amperometrically (at carbon fiber ultramicroelectrodes) at adrenal chromaffin cells, which release catecholamines after appropriate stimulation, while testing the effects due to trans -insertion of two exogenous compounds (lysophosphatidylcholine (LPC) and arachidonic acid (AA)) on the kinetics of exocytotic events. Amperometric analyses showed that, under the present conditions (short incubation times and micromolar LPC or AA solutions), LPC favors catecholamine release (rate, event frequency, charge released) while AA disfavors the exocytotic processes. The observed kinetic features are rationalized quantitatively by considering a stalk model, for the fusion pore formation, and the physical constraints applied to the cell membrane by the presence of small fractions of LPC and AA diluted in its external leaflet (trans -insertion). We also observed that the detected amount of neurotransmitters in the presence of LPC was larger than under control conditions, while the opposite trend is observed with AA. [source] Arachidonic acid as a retrograde signal controlling growth and dynamics of retinotectal arborsDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2008B.H. Leu Abstract In the developing visual system, correlated presynaptic activity between neighboring retinal ganglion cells (RGC) stabilizes retinotopic synapses via a postsynaptic NMDAR (N -methyl- D -aspartate receptor)-dependent mechanism. Blocking NMDARs makes individual axonal arbors larger, which underlies an unsharpened map, and also increases branch turnover, as if a stabilizing factor from the postsynaptic partner is no longer released. Arachidonic acid (AA), a candidate retrograde stabilizing factor, is released by cytoplasmic phospholipase A2 (cPLA2) after Ca2+ entry through activated NMDARs, and can activate presynaptic protein kinase C to phosphorylate various substrates such as GAP43 to regulate cytoskeletal dynamics. To test the role of cPLA2 in the retinotectal system of developing zebrafish, we first used PED6, a fluorescent reporter of cPLA2 activity, to show that 1,3 min of strobe flashes activated tectal cPLA2 by an NMDAR-dependent mechanism. Second, we imaged the dynamic growth of retinal arbors during both local inhibition of tectal cPLA2 by a pharmacological inhibitor, arachidonic tri-fluoromethylketone, and its suppression by antisense oligonucleotides (both injected intraventricularly). Both methods produced larger arbors and faster branch dynamics as occurs with blocking NMDARs. In contrast, intraocular suppression of retinal cPLA2 with large doses of antisense oligos produced none of the effects of tectal cPLA2 inhibition. Finally, if AA is the retrograde messenger, the application of exogenous AA to the tectum should reverse the increased branch turnover caused by blocking either NMDARs or cPLA2. In both cases, intraventricular injection of AA stabilized the overall branch dynamics, bringing rates down below the normal values. The results suggest that AA generated postsynaptically by cPLA2 downstream of Ca2+ entry through NMDARs acts as a retrograde signal to regulate the dynamic growth of retinal arbors. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] Supplemental dietary flaxseed oil affects both neutral and phospholipid fatty acids in cultured tilapiaEUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 8 2008Nilson E. de Souza Abstract This work aimed to evaluate the neutral lipid (NL) and phospholipid (PL) classes in tilapia (Oreochromis niloticus) muscle tissue. Tilapias were raised in captivity for a period of 5,months with increasing levels (0, 1.25, 2.50, 3.75, and 5.00%) of flaxseed oil [source of ,-linolenic acid (LNA), 18:3n -3] in substitution for sunflower oil (control). The NL/PL ratio was 1.9, and 45,fatty acids were determined for both classes of lipid. The class totals of n -3 acids always increased in all treatments, while the totals for n -6 acids always decreased (p,<0.05). For a given level of flaxseed oil, the LNA contents were consistently higher, including EPA (20:5n -3) and DHA (22:6n -3). Arachidonic acid (20:4n -6) remained high in the PL but was reduced as levels of dietary flaxseed oil were increased. The n -6/n -3 ratios decreased significantly with the rise in flaxseed oil content in all treatments, and highly unsaturated fatty acid contents increased with the levels of flaxseed oil. Overall, the influence of flaxseed oil on the fatty acid composition in the contributing NL and PL classes was to increase n -3 PUFA, thus raising the nutritional value of this freshwater fish meat and, consequently, contributing to the health of consumers. [source] Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicideJOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2007Akhlaq A. Farooqui Abstract The neural membranes contain phospholipids, sphingolipids, cholesterol, and proteins. Glycerophospholipids and sphingolipids are precursors for lipid mediators involved in signal transduction processes. Degradation of glycerophospholipids by phospholipase A2 (PLA2) generates arachidonic acid (AA) and docosahexaenoic acids (DHA). Arachidonic acid is metabolized to eicosanoids and DHA is metabolized to docosanoids. The catabolism of glycosphingolipids generates ceramide, ceramide 1-phosphate, sphingosine, and sphingosine 1-phosphate. These metabolites modulate PLA2 activity. Arachidonic acid, a product derived from glycerophospholipid catabolism by PLA2, modulates sphingomyelinase (SMase), the enzyme that generates ceramide and phosphocholine. Furthermore, sphingosine 1-phosphate modulates cyclooxygenase, an enzyme responsible for eicosanoid production in brain. This suggests that an interplay and cross talk occurs between lipid mediators of glycerophospholipid and glycosphingolipid metabolism in brain tissue. This interplay between metabolites of glycerophospholipid and sphingolipid metabolism may play an important role in initiation and maintenance of oxidative stress associated with neurologic disorders as well as in neural cell proliferation, differentiation, and apoptosis. Recent studies indicate that PLA2 and SMase inhibitors can be used as neuroprotective and anti-apoptotic agents. Development of novel inhibitors of PLA2 and SMase may be useful for the treatment of oxidative stress, and apoptosis associated with neurologic disorders such as stroke, Alzheimer disease, Parkinson disease, and head and spinal cord injuries. © 2007 Wiley-Liss, Inc. [source] Arachidonic acid and its metabolites are involved in the expression of neocortical spike-and-wave spindling episodes in DBA/2J miceJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2001A. Capasso This work was undertaken to study the effects of dexamethasone, indometacin and mifepristone plus dexamethasone on the neocortical spike-and-wave spindling episodes (S&W) in the electrocorticogram of DBA/2J mice. Our data indicate that both dexamethasone and indometacin (1, 10, 100 ,g kg,1, i.p.) reduced the S&W of DBA/2J mice. This effect appeared 30 min after drug administration and lasted for the duration of the recording period (240 min). Mifepristone, a glucocorticoid receptor antagonist (1, 10, 100 ,g kg,1, i.p.), injected 2 h before dexamethasone, totally blocked the steroid effect. These results indicate that both dexamethasone and indometacin significantly reduce the S&W of DBA/2J mice, suggesting a possible involvement of arachidonic acid and its metabolites in the development of brain excitability. [source] Plasma lipids and inflammation in active inflammatory bowel diseasesALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 3 2009G. ROMANATO Summary Background, Ulcerative colitis (UC) and Crohn's disease (CD) can cause metabolic and inflammatory alterations. Aim, To evaluate the relationships between inflammatory parameters, plasma lipids and phospholipid fatty acid (FA) composition in patients with active UC and CD. Methods, Diet, the Harvey,Bradshaw Activity Index (HBAI), inflammatory parameters, lipoproteins and FA composition were assessed in 60 CD and 34 UC. Results, No differences in clinical parameters were observed in the two groups. Total cholesterol correlated inversely with the number of bowel movements in both groups and directly with BMI in UC. Arachidonic acid correlated inversely with HBAI in UC and total and HDL cholesterol were inversely related to C-reactive protein (CRP) in CD while HDL correlated with CRP in UC. Docosapentaenoic acid was the only polyunsaturated n -3 FA that was correlated to CRP in both groups. Total cholesterol was independently associated in the multiple regression analysis with the number of bowel movements and systemic inflammation. Conclusions, Total and LDL cholesterol were lower in the active UC and CD than in the healthy subjects and were correlated with the systemic inflammatory status. Phospholipid FA composition was correlated to the systemic inflammatory status, but was unrelated to dietary intake and intestinal disease activity. [source] Effects of tanshinone I isolated from Salvia miltiorrhiza Bunge on arachidonic acid metabolism and in vivo inflammatory responsesPHYTOTHERAPY RESEARCH, Issue 7 2002Sung Young Kim Abstract Arachidonic acid (AA) mainly released from the cell membrane by phospholipase A2 (PLA2) is converted to eicosanoids by the action of cyclooxygenase (COX) and lipoxygenase (LO). In order to find the specific inhibitors of AA metabolism especially PLA2 and COX-2, 300 plant extracts were evaluated for their inhibitory activity on PGD2 production from cytokine-induced mouse bone marrow-derived mast cells in vitro. From this screening procedure, the methanol extract of Salvia miltiorrhiza was found to inhibit PGD2 production and the ethyl,acetate subfraction gave the strongest inhibition of five subfractions tested. From this ethyl,acetate subfraction, an activity-guided isolation finally gave tanshinone I as an active principle. This investigation deals with the effects of tanshinone I on AA metabolism from lipopolysaccharide (LPS)-induced RAW 264.7 cells and in vivo antiinflammatory activity. Tanshinone I inhibited PGE2 formation from LPS-induced RAW macrophages (IC50,=,38,,M). However, this compound did not affect COX-2 activity or COX-2 expression. Tanshinone I was found to be an inhibitor of type IIA human recombinant sPLA2(IC50,=,11,,M) and rabbit recombinant cPLA2 (IC50,=,82,,M). In addition, tanshinone I showed in vivo antiinflammatory activity in rat carrageenan-induced paw oedema and adjuvant-induced arthritis. Copyright © 2002 John Wiley & Sons, Ltd. [source] Control of the single channel conductance of K2P10.1 (TREK-2) by the amino-terminus: role of alternative translation initiationTHE JOURNAL OF PHYSIOLOGY, Issue 23 2008Dina Simkin TREK-2 expressed in mammalian cells exhibits small (,52 pS) and large (,220 pS) unitary conductance levels. Here we tested the role of the N-terminus (69 amino acids long) in the control of the unitary conductance, and role of the alternative translation initiation as a mechanism that produces isoforms of TREK-2 that show different conductance levels. Deletion of the first half (,1,36) of the N-terminus had no effect. However, deletion of most of the N-terminus (,1,66) resulted in the appearance of only the large-conductance channel (,220 pS). In support of the critical function of the distal half of the N-terminus, the deletion mutants ,1,44 and ,1,54 produced ,90 pS and 188 pS channels, respectively. In Western blot analysis, TREK-2 antibody detected two immunoreactive bands at ,54 kDa and ,60 kDa from cells expressing wild-type TREK-2 that has three potential translation initiation sites (designated M1M2M3) within the N-terminus. Mutation of the second and third initiation sites from Met to Leu (M1L2L3) produced only the ,60 kDa isoform and the small-conductance channel (,52 pS). Mutants designed to produce translation from the second (M2L3) or third (M3) initiation site produced the ,54 kDa isoform, and the large conductance channel (,185,224 pS). M1L2L3, M2L3 and M3 were relatively selectively permeable to K+, as judged by the 51,55 mV shifts in reversal potential following a 10-fold change in [K+]o. PNa/PK values were also similar for M1L2L3 (,0.02), M2L3 (,0.02) and M3 (,0.03). Arachidonic acid, proton and membrane stretch activated, whereas dibutyryl-cAMP inhibited all three isoforms of TREK-2, indicating that deletion of the N-terminus does not abolish modulation. These results show that the small and large conductance TREK-2 channels are produced as a result of alternative translation initiation, producing isoforms with long and short N-termini, and that the distal half of the N-terminus controls the unitary conductance. [source] Arachidonic acid activation of intratumoral steroid synthesis during prostate cancer progression to castration resistanceTHE PROSTATE, Issue 3 2010Jennifer A. Locke Abstract BACKGROUND De novo androgen synthesis and subsequent androgen receptor (AR) activation has recently been shown to contribute to castration-resistant prostate cancer (CRPC) progression. Herein we provide evidence that fatty acids (FA) can trigger androgen synthesis within steroid starved prostate cancer (CaP) tumor cells. METHODS Tumoral FA and steroid levels were assessed by GC,MS and LC,MS, respectively. Profiles of genes and proteins involved in FA activation of steroidogenesis were assessed by fluorescence microscopy, immunohistochemistry, microarray expression profiling and Western blot analysis. RESULTS In human CaP tissues the levels of proteins responsible for FA activation of steroid synthesis were observed to be altered during progression to CRPC. Further investigating this mechanism in LNCaP cells, we demonstrate that specific FA, arachidonic acid, is synthesized in an androgen-dependent and AR-mediated manner. Arachidonic acid is known to induce steroidogenic acute regulatory protein (StAR) in steroidogenic cells. When bound to hormone sensitive lipase (HSL), StAR shuttles free cholesterol into the mitochondria for downstream conversion into androgens. We show that arachidonic acid induces androgen production in steroid starved LNCaP cells coincidently in the same conditions that HSL and StAR are predominantly localized in the mitochondria. Furthermore, their activities are verified by a functional increase in mitochondrial uptake of cholesterol in this steroid starved environment. CONCLUSIONS We propose that this characterized arachidonic acid induced steroidogenesis mechanism significantly contributes to the activation of AR in CRPC progression and therefore recommend that fatty acid pathways be targeted therapeutically in progressing CaP. Prostate 70: 239,251, 2010. © 2009 Wiley-Liss, Inc. [source] Arachidonic acid, arachidonic/eicosapentaenoic acid ratio, stearidonic acid and eicosanoids are involved in dietary-induced albinism in Senegal sole (Solea senegalensis)AQUACULTURE NUTRITION, Issue 2 2008M. VILLALTA Abstract Senegal sole larvae were fed live prey enriched with different amounts of arachidonic acid (ARA, 20:4n-6) and eicosapentaenoic acid (EPA, 20:5n-3) to re-evaluate the effect of these two fatty acids on flatfish pigmentation. Echium oil, a plant-derived oil rich in gamma-linolenic acid (18:3n-6) and stearidonic acid (18:4n-3) was also used as a component of one of the enrichment emulsions. Although ARA content did not have any effect on growth there was a clear influence on pigmentation that correlated clearly with prostaglandin production. Inclusion of Echium oil, on the contrary, exerted a positive effect on pigmentation rate even though dietary ARA levels were as high as in the other emulsions. The relationships between dietary ARA levels and dietary ARA/EPA ratio, prostaglandin production and pigmentation are discussed. [source] Microparticles stimulate the synthesis of prostaglandin E2 via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1ARTHRITIS & RHEUMATISM, Issue 11 2007Astrid Jüngel Objective Microparticles are small vesicles that are released from activated or dying cells and that occur abundantly in the synovial fluid of patients with rheumatoid arthritis (RA). The goal of these studies was to elucidate the mechanisms by which microparticles activate synovial fibroblasts to express a proinflammatory phenotype. Methods Microparticles from monocytes and T cells were isolated by differential centrifugation. Synovial fibroblasts were cocultured with increasing numbers of microparticles. Gene expression was analyzed by real-time polymerase chain reaction and confirmed by Western blotting and enzyme immunoassay. Arachidonic acid labeled with tritium was used to study the transport of biologically active lipids by microparticles. The roles of NF-,B and activator protein 1 (AP-1) signaling were analyzed with electrophoretic mobility shift assay and transfection with small interfering RNA and I,B expression vectors. Results Microparticles strongly induced the synthesis of cyclooxygenase 2 (COX-2), microsomal prostaglandin E synthase 1 (mPGES-1), and prostaglandin E2 (PGE2). In contrast, no up-regulation of COX-1, mPGES-2, cytosolic PGES, or phospholipase A2 was observed. The induction of PGE2 was blocked by selective inhibition of COX-2. Microparticles activated NF-,B, AP-1, p38, and JNK signaling in synovial fibroblasts. Inhibition of NF-,B, AP-1, and JNK signaling reduced the stimulatory effects. Arachidonic acid was transported from leukocytes to fibroblasts by microparticles. Arachidonic acid derived from microparticles was converted to PGE2 by synovial fibroblasts. Conclusion These results demonstrate that microparticles up-regulate the production of PGE2 in synovial fibroblasts by inducing COX-2 and mPGES-1. These data provide evidence for a novel mechanism by which microparticles may contribute to inflammation and pain in RA. [source] Relationships between intestinal polyp formation and fatty acid levels in plasma, erythrocytes, and intestinal polyps in Min miceCANCER SCIENCE, Issue 12 2008Kiyonori Kuriki We have reported that a hyperlipidemic state is characteristic of Apc -deficient Min mice with multiple intestinal polyps. In our earlier case-control study, colorectal cancer risk showed positive relationships with erythrocyte membrane compositions of palmitic and oleic acids, but negative links with linoleic and arachidonic acids. To examine the roles of fatty acids in intestinal polyp formation, levels in plasma, erythrocytes, and intestinal polyps in Min mice were compared with those in wild-type mice. A diet free of eicosapentaenoic and docosahexaenoic acids with antineoplastic effects was fed to all mice from 6 to 15 weeks of age. Fatty acid levels were measured using accelerated solvent extraction and gas,liquid chromatography. Min mice with a hyperlipidemic state and multiple intestinal polyps had elevated values for palmitic and oleic acids in plasma and erythrocytes (at least P < 0.05), and higher plasma level of linoleic acid (P < 0.05). Arachidonic acid was 24.5% lower in erythrocytes (P < 0.0005), but did not differ in plasma. In Min mice, moreover, oleic and arachidonic acids were 1.78 and 1.43 times higher, respectively, in intestinal polyps than in paired normal mucosa (P < 0.05 and P < 0.01, respectively), but linoleic acid was 31.9% lower (P < 0.001). The present study suggests that palmitic, oleic, and arachidonic acids play key roles in intestinal polyp formation, and demonstrates reduced erythrocyte arachidonic acid values of Min mice, in line with our previous findings for patients with sporadic colorectal cancers. (Cancer Sci 2008; 99: 2410,2416) [source] Renal And Cardiovascular Actions Of 20-Hydroxyeicosatetraenoic Acid And Epoxyeicosatrienoic AcidsCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 11 2000Richard J Roman SUMMARY 1. Arachidonic acid (AA) is metabolized by cytochrome P450 (CYP)-dependent pathways to epoxyeicosatrienoic acids (EET) and 20-hydroxyeicosatetraenoic acid (20-HETE) in the kidney and the peripheral vasculature. 2. The present short review summarizes the renal and cardiovascular actions of these important mediators. 3. Epoxyeicosatrienoic acids are vasodilators produced by the endothelium that hyperpolarize vascular smooth muscle (VSM) cells by opening Ca2+ -activated K+ (KCa) channels. 20-Hydroxyeicosatetraenoic acid is a vasoconstrictor that inhibits the opening of KCa channels in VSM cells. Cytochrome P450 4A inhibitors block the myogenic response of small arterioles to elevations in transmural pressure and autoregulation of renal and cerebral blood flow in vivo. Cytochrome P450 4A blockers also attenuate the vasoconstrictor response to elevations in tissue PO2, suggesting that this system may serve as a vascular oxygen sensor. Nitric oxide and carbon monoxide inhibit the formation of 20-HETE and a fall in 20-HETE levels contributes to the activation of KCa channels in VSM cells and the vasodilator response to these gaseous mediators. 20-Hydroxyeicosatetraenoic acid also mediates the inhibitory actions of peptide hormones on sodium transport in the kidney and the mitogenic effects of growth factors in VSM and mesangial cells. A deficiency in the renal production of 20-HETE is associated with the development of hypertension in Dahl salt-sensitive rats. 4. In summary, the available evidence indicates that CYP metabolites of AA play a central role in the regulation of renal, pulmonary and vascular function and that abnormalities in this system may contribute to the pathogenesis of cardiovascular diseases. [source] Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal developmentACTA PAEDIATRICA, Issue 4 2001B Koletzko This paper reports on the conclusions of a workshop on the role of long chain polyunsaturated fatty acids (LC-PUFA) in maternal and child health The attending investigators involved in the majority of randomized trials examining LC-PUFA status and functional outcomes summarize the current knowledge in the field and make recommendations for dietary practice. Only studies published in full or in abstract form were used as our working knowledge base. Conclusions: For healthy infants we recommend and strongly support breastfeeding as the preferred method of feeding, which supplies preformed LC-PUFA. Infant formulas for term infants should contain at least 0.2% of total fatty acids as docosahexaenoic acid (DHA) and 0.35% as arachidonic acid (AA). Since preterm infants are born with much less total body DHA and AA, we suggest that preterm infant formulas should include at least 0.35% DHA and 0.4% AA. Higher levels might confer additional benefits and should be further investigated because optimal dietary intakes for term and preterm infants remain to be defined. For pregnant and lactating women we consider it premature to recommend specific LC-PUFA intakes. However, it seems prudent for pregnant and lactating women to include some food sources of DHA in their diet in view of their assumed increase in LC-PUFA demand and the relationship between maternal and foetal DHA status. [source] Local Ca2+ influx through CRAC channels activates temporally and spatially distinct cellular responsesACTA PHYSIOLOGICA, Issue 1 2009A. B. Parekh Abstract Ca2+ entry through store-operated Ca2+ release-activated Ca2+ (CRAC) channels controls a disparate array of key cellular responses. In this review, recent work will be described that shows local Ca2+ influx through CRAC channels has important spatial and temporal consequences on cell function. A localized Ca2+ rise below the plasma membrane activates, within tens of seconds, catabolic enzymes resulting in the generation of the intracellular messenger arachidonic acid and the paracrine pro-inflammatory molecule LTC4. In addition, local Ca2+ entry can activate gene expression, which develops over tens of minutes. Local Ca2+ influx through CRAC channels therefore has far-reaching consequences on intra- and intercellular communication. [source] Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxiaACTA PHYSIOLOGICA, Issue 1-2 2006I. H. Lambert Abstract Phospholipase A2 (PLA2) activity is increased in mammalian cells in response to numerous stimuli such as osmotic challenge, oxidative stress and exposure to allergens. The increased PLA2 activity is seen as an increased release of free, polyunsaturated fatty acids, e.g. arachidonic acid and membrane-bound lysophospholipids. Even though arachidonic acid acts as a second messenger in its own most mammalian cells seem to rely on oxidation of the fatty acid into highly potent second messengers via, e.g. cytochrome P450, the cyclo-oxygenase, or the lipoxygenase systems for downstream signalling. Here, we review data that illustrates that stress-induced PLA2 activity involves various PLA2 subtypes and that the PLA2 in question is determined by the cell type and the physiological stress condition. [source] Sustained increase in arterial blood pressure and vascular resistance induced by infusion of arachidonic acid in ratsACTA PHYSIOLOGICA, Issue 1 2000Kirkebų The haemodynamic responses to arachidonic acid (AA) have been investigated in seven groups of anaesthetized rats. Sodium arachidonate was infused intravenously for 4 or 20 min, and arterial blood pressure was recorded continuously. Cardiac output and organ blood flow were measured by microspheres. Infusion of arachidonate caused first a fast drop in arterial blood pressure, thereafter it increased steadily for 5,15 min towards a pressure about 25 mmHg above control level. The high pressure was maintained for at least 1 h. Repeated infusions of arachidonate gave similar responses. Inhibition of cyclo-oxygenase by indomethacin prevented the initial pressure drop to arachidonate, but not the sustained increase in pressure. Arterial pressure, total vascular resistance and blood flow in the kidneys, adrenals and spleen were significantly reduced, whereas cardiac output was not changed 4 min after start infusion of arachidonate. However, average blood pressure was significantly increased 22 and 35 min after start infusion (from 103.9 ± 2.9 to 128.1 ± 6.1 and 135.8 ± 4.6 mmHg). Mean vascular resistance increased simultaneously (from 3.5 ± 0.2 to 4.7 ± 0.4 and 5.2 ± 0.4 mmHg 100 mL,1), while cardiac output, stroke volume and heart rate were maintained or slightly reduced. The renal blood flow was significantly lowered (from average 4.9 ± 0.1 to 3.3 ± 0.2 and 4.0 ± 0.2 mL min,1). Indomethacin did not prevent the changes in vascular resistance or organ blood flow recorded after 20,35 min. On the other hand, inhibition of both cyclo-oxygenase, lipoxygenase and the cytochrome P450 pathways by eicosatetrayonic acid (ETYA) normalized all haemodynamic parameters. Likewise, the rise in pressure was prevented by 17-octadecynoic acid (17-ODYA), an inhibitor of the cytochrome P450 enzyme activity. Thus, arachidonate infusion caused a transient decrease, and then a sustained increase in arterial pressure and vascular resistance, and a long-lasting reduction in renal blood flow, possibly owing to release of a cytochrome P450 dependent vasoconstrictor metabolite of AA. [source] A link between endoplasmic reticulum stress-induced , -cell apoptosis and the group VIA Ca2+ -independent phospholipase A2 (iPLA2,)DIABETES OBESITY & METABOLISM, Issue 2010X. Lei Endoplasmic reticulum (ER) stress is becoming recognized as an important contributing factor in various diseases, including diabetes mellitus. Prolonged ER stress can cause , -cell apoptosis; however, the underlying mechanism(s) that contribute to this process are not well understood. Early reports suggested that arachidonic acid metabolites and a Ca2+ -independent phospholipase A2 (iPLA2) activity play a role in , -cell apoptosis. The PLA2 family of enzymes catalyse the hydrolysis of the sn -2 substituent (i.e. arachidonic acid) of membrane phospholipids. In light of our findings that the pancreatic islet , -cells are enriched in arachidonate-containing phospholipids and express the group VIA iPLA2,, we considered the possibility that iPLA2, participates in ER stress-induced , -cell apoptosis. Our work revealed a novel mechanism, involving ceramide generation and triggering of mitochondrial abnormalities, by which iPLA2, participates in the , -cell apoptosis process. Here, we review our evidence linking ER stress, , -cell apoptosis and iPLA2,. Continued studies in this area will increase our understanding of the contribution of iPLA2, to the evolution of diabetes mellitus and will further our knowledge of factors that influence , -cell health in diabetes mellitus and identify potential targets for future therapeutic interventions to prevent , -cell death. [source] Evaluation of effects of rofecoxib on platelet function in an in vitro model of thrombosis with circulating human bloodEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2004M. R. Hernandez Abstract Background, Cyclooxygenase (COX)-2-selective non-steroidal anti-inflammatory drugs have been used for anti-inflammatory therapy. However, it has also been described that they may increase risk of cardiovascular events. Objectives, To study the effects of COX2 inhibitor rofecoxib on platelet function using in vitro tests. Results were compared with those obtained in a parallel experiment with acetyl salicylic acid (ASA). Methods, Studies of platelet aggregation, using different agonists, were performed by a turbidimetric method. Adhesive and cohesive function of platelets were analyzed by perfusion techniques, treated blood was exposed to thrombogenic surfaces and platelet interaction was morphometrically evaluated. Results, Twenty-five µM of rofecoxib induced a prolonged lag time and a reduction in the percentage of aggregation when arachidonic acid, ADP or collagen were used as agonists. In perfusion studies with parallel chamber rofecoxib 50 µM and ASA 500 µM reduced overall platelet interaction with the collagen surface (17·4 ± 3·7, P < 0·05; vs. 32·1 ± 2·6%P < 0·05 and 17·9 ± 2·4, vs. 31·9 ± 3·24, P < 0·05, respectively). In studies performed on annular chambers, 25 µM of rofecoxib reduced platelet interaction; values of the thrombus and covered surface were 17·4 ± 4·5%; P < 0·05 and 21·1 ± 4·1%; P < 0·05, respectively, vs. 30·4 ± 7·5% and 33·5 ± 6·5 in the control. ASA did also impair thrombus formation but differences did not reach the levels of statistical significance. Moreover, rofecoxib but not ASA reduced significantly thrombus height and thrombus area (7·4 ± 0·5 µM; P < 0·005 and 96·0 ± 21·2 µM2; P < 0·05 vs. control 11·2 ± 0·9 µM and 220·0 ± 47·7µM2, respectively). Conclusion, We conclude that under our experimental conditions, rofecoxib diminished platelet aggregation induced by different agonists and inhibited platelet-mediated thrombogenesis in an in vitro model of thrombosis. [source] The expression of cytosolic phospholipase A2 and biosynthesis of leukotriene B4 in acute myeloid leukemia cellsEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 6 2007Gudmundur Runarsson Abstract Leukotrienes (LT) exert stimulatory effects on myelopoiesis, beside their inflammatory and immunomodulating effects. Here, we have studied the expression and activity of the enzymes involved in the synthesis of leukotriene B4 (LTB4) in acute myeloid leukemia (AML) cells (16 clones) and G-CSF mobilized peripheral blood CD34+ cells. CD34+ cells from patients with non-myeloid malignancies expressed cytosolic phospholipase A2 (cPLA2), 5-lipoxygenase activating protein (FLAP), and leukotriene A4 (LTA4) hydrolase but not 5-lipoxygenase (5-LO). The enzyme cPLA2 was abundantly expressed in AML cells and the activity of the enzyme was high in certain AML clones. The expression of 5-LO, FLAP, and LTA4 hydrolase in AML clones was in general lower than in healthy donor polymorphonuclear leukocytes (PMNL). The calcium ionophore A23187-induced release of [14C] arachidonic acid (AA) in AML cells was low, compared with PMNL, and did not correlate with the expression of cPLA2 protein. Biosynthesis of LTB4, upon calcium ionophore A23187 activation, was only observed in five of the investigated AML clones and only three of the most differentiated clones produced similar amounts of LTB4 as PMNL. The capacity of various cell clones to produce LTs could neither be explained by the difference in [1 , 14C] AA release nor 5-LO expression. Taken together, these results indicate that LT synthesis is under development during early myelopoiesis and the capacity to produce LTs is gained upon maturation. High expression of cPLA2 in AML suggests a putative role of this enzyme in the pathophysiology of this disease. [source] Docosahexaenoic acid (22:6n-3) enrichment of membrane phospholipids increases gap junction coupling capacity in cultured astrocytesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006Gaelle Champeil-Potokar Abstract Although it is agreed that n-3 polyunsaturated fatty acids (PUFAs) are important for brain function, it has yet to be demonstrated how they are involved in precise cellular mechanisms. We investigated the role of enhanced n-3 PUFA in astrocyte membranes on the gap junction capacity of these cells. Astrocytes isolated from newborn rat cortices were grown in medium supplemented with docosahexaenoic acid (DHA), the main n-3 PUFA in cell membranes, or arachidonic acid (AA), the main n-6 PUFA, plus an antioxidant (,-tocopherol or N -acetyl-cystein) to prevent peroxidation. The resulting three populations of astrocytes differed markedly in their n-3 : n-6 PUFA ratios in phosphatidylethanolamine and phosphatidylcholine, the main phospholipids in membranes. DHA-supplemented cells had a physiological high n-3 : n-6 ratio (1.58), unsupplemented cells had a low n-3 : n-6 ratio (0.66) and AA-supplemented cells had a very low n-3 : n-6 ratio (0.36), with excess n-6 PUFA. DHA-supplemented astrocytes had a greater gap junction capacity than unsupplemented cells or AA-supplemented cells. The enhanced gap junction coupling of DHA-enriched cells was associated with a more functional distribution of connexin 43 at cell interfaces (shown by immunocytochemistry) and more of the main phosphorylated isoform of connexin 43. These findings suggest that the high n-3 : n-6 PUFA ratio that occurs naturally in astrocyte membranes is needed for optimal gap junction coupling in these cells. [source] Deficits in spatial learning and synaptic plasticity induced by the rapid and competitive broad-spectrum cyclooxygenase inhibitor ibuprofen are reversed by increasing endogenous brain-derived neurotrophic factorEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003Kendra N. Shaw Abstract Cyclooxygenase (COX), which is present in two isoforms (COX1 and 2), synthesizes prostaglandins from arachidonic acid; it plays a crucial role in inflammation in both central and peripheral tissues. Here, we describe its role in synaptic plasticity and spatial learning in vivo via an effect on brain-derived neurotrophic factor (BDNF) and prostaglandin E2 (PGE2; both measured by Elisa). We found that broad-spectrum COX inhibition (BSCI) inhibits the induction of long-term potentiation (LTP; the major contemporary model of synaptic plasticity), and causes substantial and sustained deficits in spatial learning in the watermaze. Increases in BDNF and PGE2 following spatial learning and LTP were also blocked. Importantly, 4 days of prior exercise in a running wheel increased endogenous BDNF levels sufficiently to reverse the BSCI of LTP and spatial learning, and restored a parallel increase in LTP and learning-related BDNF and PGE2. In control experiments, we found that BSCI had no effect on baseline synaptic transmission or on the nonhippocampal visible-platform task; there was no evidence of gastric ulceration from BSCI. COX2 is inhibited by glucorticoids; there was no difference in blood corticosterone levels as measured by radioimmunoassay in any condition. Thus, COX plays a previously undescribed, permissive role in synaptic plasticity and spatial learning via a BDNF-associated mechanism. [source] Intrathecally applied flurbiprofen produces an endocannabinoid-dependent antinociception in the rat formalin testEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003Mehmet Ates Abstract It is generally accepted that the phospholipase-A2 -cyclooxygenase-prostanoids-cascade mediates spinal sensitization and hyperalgesia. However, some observations are not in line with this hypothesis. The aim of the present work was to investigate whether different components of this cascade exhibit nociceptive or antinociceptive effects in the rat formalin test. Intrathecal (i.th.) injection of prostaglandin E2 (PGE2) induced a dose-dependent antinociceptive effect on the formalin-induced nociception. Furthermore, thimerosal, which inhibits the reacylation of arachidonic acid thereby enhancing arachidonic acid levels, had an antinociceptive effect rather than the expected pronociceptive effect when given i.th. While the phospholipase A2 inhibitor methyl arachidonyl fluorophosphonate (MAFP; i.th.) had a significant antinociceptive effect, its analogue palmitoyl trifluoromethyl ketone (PTFMK; i.th.) had no significant effect on the formalin-induced nociception. However, MAFP, but not PTFMK, showed a cannabinoid CB1 agonistic effect as shown by the inhibition of electrically evoked contractions of the vas deferens isolated from CB1 wild-type mice but not of that from CB1 knockout mice. The antinociceptive effect of MAFP was completely reversed by the CB1 receptor antagonist AM-251 (i.th.), thus attributing such effect to its CB1 agonistic effect. Moreover, the antinociceptive effect of the cyclooxygenase inhibitor, flurbiprofen (i.th.) was reversed by the co-administration of AM-251, but not by PGE2. Finally. the combination of phenylmethylsulfonyl fluoride (PMSF; intraperitoneal), which inhibits the degradation of anandamide through the inhibition of fatty acid amidohydrolase, with thimerosal (i.th.) produced a profound CB1 -dependent antinociception. The present results show that endocannabinoids play a major role in mediating flurbiprofen-induced antinociception at the spinal level. [source] Enhancement of Ca2+ -regulated exocytosis by indomethacin in guinea-pig antral mucous cells: arachidonic acid accumulationEXPERIMENTAL PHYSIOLOGY, Issue 1 2006Shoko Fujiwara Ca2+ -regulated exocytosis is enhanced by an autocrine mechanism via the PGE2,cAMP pathway in antral mucous cells of guinea-pigs. The inhibition of the PGE2,cAMP pathway by H-89 (an inhibitor of protein kinase A, PKA) or aspirin (ASA, an inhibitor of cyclo-oxygenase, COX) decreased the frequency of ACh-stimulated exocytotic events by 60%. Indomethacin (IDM, an inhibitor of COX), however, decreased the frequency of ACh-stimulated exocytotic events only by 30%. Moreover, IDM increased the frequency of ACh-stimulated exocytotic events by 50% in H-89-treated or ASA-treated cells. IDM inhibits the synthesis of Prostaglandin (PGG/H) and (15R)-15-hydroxy-5,8,11 cis-13-trans-eicosatetraenoic acid (15R-HPETE), while ASA inhibits only the synthesis of PGG/H. Thus, IDM may accumulate arachidonic acid (AA). AACOCF3 or N -(p -amylcinnamoyl) anthranilic acid (ACA; both inhibitors of phospholipase A2, PLA2), which inhibits AA synthesis, decreased the frequency of ACh-stimulated exocytotic events by 60%. IDM, however, did not increase the frequency in AACOCF3 -treated cells. AA increased the frequency of ACh-stimulated exocytotic events in AACOCF3 - or ASA-treated cells, similar to IDM in ASA- and H-89-treated cells. Moreover, in the presence of AA, IDM did not increase the frequency of ACh-stimulated exocytotic events in ASA-treated cells. The PGE2 release from antral mucosa indicates that inhibition of PLA2 by ACA inhibits the AA accumulation in unstimulated and ACh-stimulated antral mucosa. The dose,response study of AA and IDM demonstrated that the concentration of intracellular AA accumulated by IDM is less than 100 nm. In conclusion, IDM modulates the ACh-stimulated exocytosis via AA accumulation in antral mucous cells. [source] Actions of Arachidonic Acid on Contractions and Associated Electrical Activity in Guinea-Pig Isolated Ventricular MyocytesEXPERIMENTAL PHYSIOLOGY, Issue 4 2001M. A. Mamas The actions of arachidonic acid (AA) were investigated in guinea-pig isolated ventricular myocytes. Exposure of myocytes to 10 ,M AA reduced the amplitude of contractions and calcium transients accompanying action potentials at a frequency of 1 Hz. AA (10 ,M) also reduced the amplitude of calcium currents recorded under voltage-clamp conditions. The suppression of contraction by AA was not prevented by either 10 ,M trihydroindomethicin (to inhibit cyclo-oxygenase) or 10 ,M ETYA (5,8,11,14-eicosatetraynoic acid, to inhibit AA metabolising enzymes), showing that the actions of AA appeared not to be mediated by these metabolites. The reduction of contraction by 10 ,M AA was also not prevented by the protein kinase C inhibitor, Ro31-8220 (1 ,M), showing that this pathway appeared not to be required for the observed effect. Direct effects of AA may be involved. A further action of 10 ,M AA was to suppress spontaneous electrical activity induced by either the ,-adrenergic agonist isoprenaline or the Na+ pump inhibitor, ouabain. This effect of AA on spontaneous activity might be associated with the observed reduction of calcium entry through L-type calcium channels, although additional effects of AA on calcium release from the sarcoplasmic reticulum might also be involved. [source] An active triple-catalytic hybrid enzyme engineered by linking cyclo-oxygenase isoform-1 to prostacyclin synthase that can constantly biosynthesize prostacyclin, the vascular protectorFEBS JOURNAL, Issue 23 2008Ke-He Ruan It remains a challenge to achieve the stable and long-term expression (in human cell lines) of a previously engineered hybrid enzyme [triple-catalytic (Trip-cat) enzyme-2; Ruan KH, Deng H & So SP (2006) Biochemistry45, 14003,14011], which links cyclo-oxygenase isoform-2 (COX-2) to prostacyclin (PGI2) synthase (PGIS) for the direct conversion of arachidonic acid into PGI2 through the enzyme's Trip-cat functions. The stable upregulation of the biosynthesis of the vascular protector, PGI2, in cells is an ideal model for the prevention and treatment of thromboxane A2 (TXA2)-mediated thrombosis and vasoconstriction, both of which cause stroke, myocardial infarction, and hypertension. Here, we report another case of engineering of the Trip-cat enzyme, in which human cyclo-oxygenase isoform-1, which has a different C-terminal sequence from COX-2, was linked to PGI2 synthase and called Trip-cat enzyme-1. Transient expression of recombinant Trip-cat enzyme-1 in HEK293 cells led to 3,5-fold higher expression capacity and better PGI2 -synthesizing activity as compared to that of the previously engineered Trip-cat enzyme-2. Furthermore, an HEK293 cell line that can stably express the active new Trip-cat enzyme-1 and constantly synthesize the bioactive PGI2 was established by a screening approach. In addition, the stable HEK293 cell line, with constant production of PGI2, revealed strong antiplatelet aggregation properties through its unique dual functions (increasing PGI2 production while decreasing TXA2 production) in TXA2 synthase-rich plasma. This study has optimized engineering of the active Trip-cat enzyme, allowing it to become the first to stably upregulate PGI2 biosynthesis in a human cell line, which provides a basis for developing a PGI2 -producing therapeutic cell line for use against vascular diseases. [source] Docosahexaenoic acid stabilizes soluble amyloid-, protofibrils and sustains amyloid-,-induced neurotoxicity in vitroFEBS JOURNAL, Issue 4 2007Ann-Sofi Johansson Enrichment of diet and culture media with the polyunsaturated fatty acid docosahexaenoic acid has been found to reduce the amyloid burden in mice and lower amyloid-, (A,) levels in both mice and cultured cells. However, the direct interaction of polyunsaturated fatty acids, such as docosahexaenoic acid, with A,, and their effect on A, aggregation has not been explored in detail. Therefore, we have investigated the effect of docosahexaenoic acid, arachidonic acid and the saturated fatty acid arachidic acid on monomer oligomerization into protofibrils and protofibril fibrillization into fibrils in vitro, using size exclusion chromatography. The polyunsaturated fatty acids docosahexaenoic acid and arachidonic acid at micellar concentrations stabilized soluble A,42 wild-type protofibrils, thereby hindering their conversion to insoluble fibrils. As a consequence, docosahexaenoic acid sustained amyloid-,-induced toxicity in PC12 cells over time, whereas A, without docosahexaenoic acid stabilization resulted in reduced toxicity, as A, formed fibrils. Arachidic acid had no effect on A, aggregation, and neither of the fatty acids had any protofibril-stabilizing effect on A,42 harboring the Arctic mutation (A,E22G). Consequently, A,Arctic-induced toxicity could not be sustained using docosahexaenoic acid. These results provide new insights into the toxicity of different A, aggregates and how endogenous lipids can affect A, aggregation. [source] Structural and functional comparison of 15S - and 15R -specific cyclooxygenases from the coral Plexaura homomallaFEBS JOURNAL, Issue 17 2004Karin Valmsen It has been known for 30 years that the gorgonian coral Plexaura homomalla contains either 15S- or 15R -configuration prostaglandins (PGs), depending on its location in the Caribbean. Recently we showed that the 15R -PGs in the R -variety of P. homomalla are formed by a unique cyclooxygenase (COX) with 15R oxygenation specificity [Valmsen, K., Järving, I., Boeglin, W.E., Varvas, K., Koljak, R., Pehk, T., Brash, A.R. & Samel, N. (2001) Proc. Natl. Acad. Sci. USA98, 7700]. Here we describe the cloning and characterization of a closely related COX protein (97% amino acid sequence identity) from the S -variety of P. homomalla. Functional expression of the S -variant COX cDNA in Sf9 insect cells followed by incubation with exogenous arachidonic acid resulted in formation of PG products with > 98% 15S -configuration. Mutational analysis was performed on a suggested active site determinant of C-15 oxygenation specificity, position 349 (Val in all S -specific COX, Ile in 15R -COX). The 15S -COX Val349 to Ile mutant formed 35% 15R- PGs, while the reverse mutation in the 15R -COX (Ile349Val) led to formation of 70% 15S- products. This establishes position 349 as an important determinant of the product stereochemistry at C-15. Our characterization of the enzyme variants demonstrates that very minor sequence divergence accounts for the content of epimeric PGs in the two variants of P. homomalla and that the differences do not arise by isomerization of the products. [source] |