Home About us Contact | |||
Arable Soils (arable + soil)
Selected AbstractsComposition of organic matter in a subtropical Acrisol as influenced by land use, cropping and N fertilization, assessed by CPMAS 13C NMR spectroscopyEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 6 2005J. Dieckow Summary We know much about the influence of management on stocks of organic matter in subtropical soils, yet little about the influence on the chemical composition. We therefore studied by CPMAS 13C NMR spectroscopy the composition of the above-ground plant tissue, of the organic matter of the whole soil and of silt- and clay-size fractions of the topsoil and subsoil of a subtropical Acrisol under grass and arable crops. Soil samples were collected from three no-till cropping systems (bare soil; oats,maize; pigeon pea + maize), each receiving 0 and 180 kg N ha,1 year,1, in a long-term field experiment. Soil under the original native grass was also sampled. The kind of arable crops and grass affected the composition of the particulate organic matter. There were no differences in the composition of the organic matter in silt- and clay-size fractions, or of the whole soil, among the arable systems. Changes were observed between land use: the soil of the grassland had larger alkyl and smaller aromatic C contents than did the arable soil. The small size fractions contain microbial products, and we think that the compositional difference in silt- and clay-size fractions between grassland and the arable land was induced by changes in the soil's microbial community and therefore in the quality of its biochemical products. The application of N did not affect the composition of the above-ground plant tissue nor of the particulate organic matter and silt-size fractions, but it did increase the alkyl C content in the clay-size fraction. In the subsoil, the silt-size fraction of all treatments contained large contents of aromatic C. Microscopic investigation confirmed that this derived from particles of charred material. The composition of organic matter in this soil is affected by land use, but not by variations in the arable crops grown. [source] Characterizing organic matter of soil aggregate coatings and biopores by Fourier transform infrared spectroscopyEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2004R. H. Ellerbrock Summary In some soils, aggregate coatings and walls of biopores differ in the content of clay and organic carbon from that of the aggregate interiors or the soil matrix. The composition of the organic matter on aggregates and on the surfaces of biopores is largely unknown. We have compared the composition of organic matter between inner and outer parts of aggregates and between biopore walls and the soil matrix in a loamy arable soil and a sandy forest one. Hot-water- and sodium-pyrophosphate-extractable organic matter was analysed by Fourier transform infrared (FT-IR) spectroscopy. For the sandy forest soil, the FT-IR spectra showed that organic matter from the walls of root channels contains fewer functional groups with absorption bands at 1740,1710 cm,1 and 1640,1600 cm,1 than that from burrow fillings. For the arable soil, the content of these functional groups in hot-water-soluble organic matter from the coatings is less than in that from the interiors in the topsoil, and the reverse is so in the subsoil, probably because water-soluble organic matter containing these functional groups has moved from topsoil to subsoil. The results indicate that root channels in the forest soil have more reactive zones in an otherwise relatively inert sandy matrix, whereas aggregate coatings in the arable subsoil have a greater cation exchange capacity and a greater sorption potential for hydrophobic substances than the aggregate interiors. [source] Carbon sequestration under Miscanthus: a study of 13C distribution in soil aggregatesGCB BIOENERGY, Issue 5 2009MARTA DONDINI Abstract The growing of bioenergy crops has been widely suggested as a key strategy in mitigating anthropogenic CO2 emissions. However, the full mitigation potential of these crops cannot be assessed without taking into account their effect on soil carbon (C) dynamics. Therefore, we analyzed the C dynamics through four soil depths under a 14-year-old Miscanthus plantation, established on former arable land. An adjacent arable field was used as a reference site. Combining soil organic matter (SOM) fractionation with 13C natural abundance analyses, we were able to trace the fate of Miscanthus -derived C in various physically protected soil fractions. Integrated through the whole soil profile, the total amount of soil organic carbon (SOC) was higher under Miscanthus than under arable crop, this difference was largely due to the input of new C. The C stock of the macroaggregates (M) under Miscanthus was significantly higher than those in the arable land. Additionally, the C content of the micro-within macroaggregates (mM) were higher in the Miscanthus soil as compared with the arable soil. Analysis of the intramicroaggregates particulate organic matter (POM) suggested that the increase C storage in mM under Miscanthus was caused by a decrease in disturbance of M. Thus, the difference in C content between the two land use systems is largely caused by soil C storage in physically protected SOM fractions. We conclude that when Miscanthus is planted on former arable land, the resulting increase in soil C storage contributes considerably to its CO2 mitigation potential. [source] Vertical distribution of soil properties under short-rotation forestry in Northern GermanyJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2010Petra Kahle Abstract Short-rotation forestry (SRF) on arable soils has high potentials for biomass production and leads to long-term no-tillage management. In the present study, the vertical distributions of soil chemical and microbial properties after 15 y of SRF with willows and poplar (Salix and Populus spp.) in 3- and 6-year rotations on an arable soil were measured and compared to a pertinent tilled arable site. Two transects at different positions in the relief (upper and lower slope; transect 1 and 2) were investigated. Short-rotation forestry caused significant changes in the vertical distribution of all investigated soil properties (organic and microbial C, total and microbial N, soil enzyme activities), however, the dimension and location (horizons) of significant effects varied. The rotation periods affected the vertical distribution of the soil properties within the SRF significantly. In transect 1, SRF had higher organic-C concentrations in the subsoil (Bv horizon), whereas in transect 2, the organic-C concentrations were increased predominantly in the topsoil (Ah horizon). Sufficient plant supply of P and K in combination with decreased concentrations of these elements in the subsoil under SRF pointed to an effective nutrient mobilization and transfer from the deeper soil horizons even in the long term. In transect 1, the microbial-C concentrations were higher in the B and C horizons and in transect 2 in the A horizons under SRF than under arable use. The activities of ,-glucosidases and acid phosphatases in the soil were predominantly lower under SRF than under arable use in the topsoil and subsoil. We conclude, that long-term SRF on arable sites can contribute to increased C sequestration and changes in the vertical distribution of soil microbial biomass and soil enzyme activities in the topsoil and also in the subsoil. [source] Calibration model of microbial biomass carbon and nitrogen concentrations in soils using ultraviolet absorbance and soil organic matterEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2008X. Xu Summary There is a need for a rapid, simple and reliable method of determining soil microbial biomass (SMB) for all soils because traditional methods are laborious. Earlier studies have reported that SMB-C and -N concentrations in grassland and arable soils can be estimated by measurement of UV absorbance in soil extracts. However, these previous studies focused on soils with small soil organic matter (SOM) contents, and there was no consideration of SOM content as a covariate to improve the estimation. In this study, using tropical and temperate forest soils with a wide range of total C (5,204 mg C g,1 soil) and N (1,12 mg N g,1 soil) contents and pH values (4.1,5.9), it was found that increase in UV absorbance of soil extracts at 280 nm (UV280) after fumigation could account for 92,96% of the variance in estimates of the SMB-C and -N concentrations measured by chloroform fumigation and extraction (P < 0.001). The data were combined with those of earlier workers to calibrate UV-based regression models for all the soils, by taking into account their varying SOM content. The validation analysis of the calibration models indicated that the SMB-C and -N concentrations in the 0,5 cm forest soils simulated by using the increase in UV280 and SOM could account for 86,93% of the variance in concentrations determined by chloroform fumigation and extraction (P < 0.001). The slope values of linear regression equations between measured and simulated values were 0.94 ± 0.03 and 0.94 ± 0.04, respectively, for the SMB-C and -N. However, simulation using the regression equations obtained by using only the data for forest profile soils gave less good agreement with measured values. Hence, the calibration models obtained by using the increase in UV280 and SOM can give a rapid, simple and reliable method of determining SMB for all soils. [source] Soil parent material is a key determinant of the bacterial community structure in arable soilsFEMS MICROBIOLOGY ECOLOGY, Issue 3 2006Andreas Ulrich Abstract The bacterial community composition in soil and rhizosphere taken from arable field sites, differing in soil parent material and soil texture, was analyzed using terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes. Nine sandy to silty soils from North-East Germany could clearly be distinguished from each other, with a relatively low heterogeneity in the community structure within the field replicates. There was a relationship between the soil parent material, i.e. different glacial and aeolian sediments, and the clustering of the profiles from different sites. A site-specific grouping of T-RFLP profiles was also found for the rhizosphere samples of the same field sites that were planted with potatoes. The branching of the rhizosphere profiles corresponded partly with the soil parent material, whereas the effect of the plant genotype was negligible. Selected terminal restriction fragments differing in their relative abundance within the nine soils were analyzed based on the cloning of the 16S rRNA genes of one soil sample. A high phylogenetic diversity observed to include Acidobacteria, Betaproteobacteria, Bacteroidetes, Verrucomicrobia, and Gemmatimonadetes. The assignment of three out of the seven selected terminal restriction fragments to members of Acidobacteria suggested that this group seems to participate frequently in the shifting of community structures that result from soil property changes. [source] The management of arable land from prehistory to the present: Case studies from the Northern Isles of ScotlandGEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 1 2006Erika B. Guttmann The arable soils from two multiperiod settlements were analyzed to identify changes in agricultural methods over time. The settlement middens were also analyzed to determine whether potential fertilizers were discarded unused. Results suggest that in the Neolithic period (,4000,2000 B.C. in the UK) the arable soils at Tofts Ness, Orkney, and Old Scatness, Shetland, were created by flattening and cultivating the settlements' midden heaps in situ. The arable area at Tofts Ness was expanded in the Bronze Age (,2000,700 B.C. in the UK), and the new land was improved by the addition of ash, nightsoil, and domestic waste. Cultivation continued briefly after the fields were buried in windblown sand in the Late Bronze Age or Early Iron Age, but by the Early Iron Age cultivation ceased and organic-rich material was allowed to accumulate within the settlement. By contrast, at Old Scatness, arable production was increased in the Iron Age (,700 B.C.,A.D. 550 in Scotland) by the intensive use of animal manures. The results indicate that during the lifespan of the two settlements the arable soils were fertilized to increase production, which was intensified over time. © 2006 Wiley Periodicals, Inc. [source] Vertical distribution of soil properties under short-rotation forestry in Northern GermanyJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2010Petra Kahle Abstract Short-rotation forestry (SRF) on arable soils has high potentials for biomass production and leads to long-term no-tillage management. In the present study, the vertical distributions of soil chemical and microbial properties after 15 y of SRF with willows and poplar (Salix and Populus spp.) in 3- and 6-year rotations on an arable soil were measured and compared to a pertinent tilled arable site. Two transects at different positions in the relief (upper and lower slope; transect 1 and 2) were investigated. Short-rotation forestry caused significant changes in the vertical distribution of all investigated soil properties (organic and microbial C, total and microbial N, soil enzyme activities), however, the dimension and location (horizons) of significant effects varied. The rotation periods affected the vertical distribution of the soil properties within the SRF significantly. In transect 1, SRF had higher organic-C concentrations in the subsoil (Bv horizon), whereas in transect 2, the organic-C concentrations were increased predominantly in the topsoil (Ah horizon). Sufficient plant supply of P and K in combination with decreased concentrations of these elements in the subsoil under SRF pointed to an effective nutrient mobilization and transfer from the deeper soil horizons even in the long term. In transect 1, the microbial-C concentrations were higher in the B and C horizons and in transect 2 in the A horizons under SRF than under arable use. The activities of ,-glucosidases and acid phosphatases in the soil were predominantly lower under SRF than under arable use in the topsoil and subsoil. We conclude, that long-term SRF on arable sites can contribute to increased C sequestration and changes in the vertical distribution of soil microbial biomass and soil enzyme activities in the topsoil and also in the subsoil. [source] Microbial biomass in arable soils of Germany during the growth period of annual cropsJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2008Rolf Nieder Abstract Results from several field studies involving numerous measurements were used to describe the change of soil microbial biomass C (Cmic) and N (Nmic) during the growth period of annual crops (years 1988,1992, 1994, 1995) under the temperate climatic conditions of central Europe. The data were taken from our own investigations as well as from the literature. Only studies with at least eight measurements on one plot during the growth period were used. The total number of farms (cash crop,production farms) was 7, that of experimental plots was 15. The evaluation of these results through regression analysis demonstrated that Cmic and Nmic from the beginning of a year increased only slightly until summer and subsequently decreased until autumn to their initial levels. This increase on an average corresponded to a C assimilation of approx. 100,kg ha,1 and an N immobilization of approx. 20,kg ha,1 (30,cm),1. The increase in Nmic alone could not explain N immobilization rates frequently observed in different studies using 15N-labeled fertilizers. Most of the labeled N that was immobilized (>50,kg N ha,1) might have accumulated in the matrix of soil organic matter (SOM). Therefore, the changes in microbial biomass may be of less importance for changes in soil N storage as frequently assumed. [source] A comparison of two methods for the isolation of free and occluded particulate organic matterJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2005Angelika Kölbl Abstract Various methods exist for the isolation of particulate organic matter (POM), one of the soil-organic-matter (SOM) fractions reacting most sensitive on land-use or soil-management changes. A combination of density separation and ultrasonic treatment allows to isolate two types of POM: (1) free POM and (2) POM occluded in soil aggregates. POM fractions are closely linked to their biochemical function for the formation and stabilization of aggregates, therefore methods using different aggregate sizes may result in different POM fractions isolated. We evaluated two physical fractionation procedures to reveal whether they yield different POM fractions with respect to amount and composition, using grassland and arable soils with sandy-loam to sandy,clay-loam texture and thus low macroaggregate stability. Method I used air-dried aggregates of <2.0 mm size and a low-energy sonication for aggregate disruption, method II used field-moist aggregates <6.3 mm and a high-energy,sonication procedure for aggregate disruption. POM fractions were analyzed by elemental analysis (C, N) and CPMAS 13C-NMR spectroscopy. With both methods, about similar proportions of the SOM are isolated as free or occluded POM, respectively. The free- and occluded-POM fractions obtained with method I are also rather similar in C and N concentration and composition as shown by 13C-NMR spectroscopy. Method II isolates a free- and occluded-POM fraction with significantly different C and N concentrations. NMR spectra revealed significant differences in the chemical composition of both fractions from method II, with the occluded POM having lower amounts of O-alkyl C and higher amounts of aryl C and alkyl C than the free POM. Due to the use of larger, field-moist aggregates with minimized sample pretreatment, two distinctly different POM fractions are isolated with method II, likely to be more closely linked to their biochemical function for the formation and stabilization of aggregates. High-energy sonication as in method II also disrupts small microaggregates <63 µm and releases fine intraaggregate POM. This fraction seems to be a significant component of occluded POM, that allows a differentiation between free and occluded POM in sandy soils with significant microaggregation. It can be concluded, that microaggregation in arable soils with sandy texture is responsible for the storage of a more degraded occluded POM, that conversely supports the stabilization of fine microaggregates. Ein Vergleich zweier Methoden zur Isolierung von freier und okkludierter partikulärer organischer Substanz Partikuläres organisches Material (POM) wird im Hinblick auf die Landnutzung als sensitive Fraktion der organischen Bodensubstanz (SOM) angesehen, aber die unterschiedlichen Methoden seiner Isolierung erschweren den Vergleich zwischen verschiedenen Studien. Wir haben zwei physikalische Fraktionierungsmethoden ausgewertet, um zu zeigen, ob sie im Hinblick auf Menge und Zusammensetzung zu unterschiedlichen POM-Fraktionen führen. Hierfür wurden Proben von Grünland- und Ackerböden verwendet. Für Methode I wurden luftgetrocknete Aggregate der Größe <2 mm verwendet, zu deren Zerstörung eine Ultraschallbehandlung mit geringem Energieeintrag eingesetzt wurde. Für Methode II wurden feldfeuchte Aggregate der Größe <6.3 mm und eine Ultraschallbehandlung mit vergleichsweise hoher Energie zur Aggregatzerstörung herangezogen. Mit beiden Methoden konnten zwei POM-Gruppen gewonnen werden: (1) freies POM und (2) in Bodenaggregaten eingeschlossenes POM. Die POM-Fraktionen wurden mittels Elementanalyse (C, N) und CPMAS- 13C-NMR,Spektroskopie untersucht. Methode I zeigte im Hinblick auf Menge und Zusammensetzung nur sehr geringe Unterschiede zwischen freien und okkludierten POM-Fraktionen. Methode II isolierte freie und okkludierte POM-Fraktionen mit signifikant unterschiedlichen C- und N-Konzentrationen. Auch die NMR-Spektren zeigten Unterschiede in der chemischen Zusammensetzung der mit Methode II gewonnenen Fraktionen, die sich in signifikant geringeren O-Alkyl-C-Gehalten bei höheren Aryl-C- und Alkyl-C-Gehalten des okkludierten POM nachweisen ließen. Die Verwendung von größeren, feldfeuchten Aggregaten und die Minimierung der Probenvorbehandlung führt zu einer besseren Differenzierung beider POM-Fraktionen, die wahrscheinlich ihre biologische Funktion besser widerspiegelt. Zusätzlich führt eine Ultraschall-Behandlung mit hohem Energieeintrag zur Zerstörung von kleinen Mikroaggregaten <63 µm und damit zur Freisetzung von feinem Intraaggregat-POM. Diese Fraktion scheint in sandigen Böden mit niedriger Makroaggregat-Stabilität aussagekräftiger zwischen freier und okkludierter POM unterscheiden zu können. Folglich ist eine an das Bodenmaterial angepasste Probenvorbehandlung und Fraktionierungsmethode entscheidend, um eine präzise Charakterisierung der POM-Fraktionen zu gewährleisten. [source] Spatial variability of sequentially extracted P fractions in a silty loamJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2005Elena Heilmann Abstract Knowledge of the spatial distribution of soil P forms in agricultural fields is important for evaluating the risk of P transfer to waterways. The objective of this study was to characterize the spatial variation of total P (Pt) and sequentially extracted P forms in the Ap horizon of arable soils at the field scale. Soil samples were taken on a regular grid of 50 m × 50 m with 40 sampling points. Chemical analyses included basic soil properties, Pt, sequentially extracted P forms, and acid phosphomonoesterase activity. The spatial variability was analyzed by geostatistics and descriptive statistics. The concentrations of Pt ranged from 521 to 1020 mg,kg,1 with lower values observed for Gleysols and Stagnic Phaeozems and higher values for Luvisols and Cambisols. For the sequentially extracted P fractions, the largest coefficients of variation (c.v.) were found for NaHCO3 -Po (41%), NaHCO3 -Pi (36%), NaOH-Po (34%), and resin-P (33%). Despite this great spatial variability, no spatial dependence could be proved by geostatistics because the calculated range of P forms (<10 m) was below the smallest sampling distance (50 m). A clear trend of increasing concentrations and proportions of organic NaHCO3 - and NaOH-P fractions and phosphomonoesterase activity towards lower slope positions and the discharging brook indicated that Gleysols were a particular source of P losses to waterways in this catchment. It was concluded that these soils require a specific management with reduced P inputs and, perhaps, chemical treatment to fix leachable P. Räumliche Variabilität sequenziell extrahierter P-Fraktionen in einem Schlufflehm Kenntnisse über die räumliche Verteilung der P-Formen in landwirtschaftlichen Flächen sind notwendig für die Abschätzung des Risikos von P-Austrägen. Gegenstand dieser Untersuchung war die räumliche Verteilung von Gesamt-P (Pt) und P-Formen im Ap-Horizont von landwirtschaftlich genutzten Böden im Feldmaßstab. Dazu wurden Proben auf einem Raster von 50 m × 50 m an 40 Punkten entnommen. Die chemischen Analysen umfassten Grundeigenschaften sowie Pt, sequenziell extrahierte P-Formen und die Aktivität der sauren Phosphomonoesterase. Die räumliche Variabilität wurde mit räumlicher und deskriptiver Statistik untersucht. Die Pt -Gehalte lagen im Bereich von 521 bis 1020 mg,kg,1, wobei Gleye und Pseudogleye die niedrigsten Werte hatten. Bei den sequenziell extrahierten P-Fraktionen wurden die größten Variationskoeffizienten für NaHCO3 -Po (41%), NaHCO3 -Pi (36 %), NaOH-Po (34 %) und Harz-P (33 %) festgestellt. Trotz dieser großen räumlichen Variabilität konnte mit Geostatistik keine räumliche Abhängigkeit nachgewiesen werden, möglicherweise weil die geschätzte Reichweite der P-Formen mit <10 m unterhalb der kleinsten Beprobungsdistanz von 50 m lag. Deutliche gerichtete Trends steigender Gehalte und Anteile organischer NaHCO3 - und NaOH-P-Fraktionen und Phosphomonoesterase-Aktivitäten hin zu niedrigeren Geländepositionen und zur Nachbarschaft zu dem entwässernden Bach deuteten darauf hin, dass insbesondere Gleye eine Quelle der P-Einträge in Oberflächengewässer des Einzugsgebietes sein können. Es ergibt sich daher die Schlussfolgerung, dass diese Böden einer teilschlagspezifischen Bewirtschaftung mit reduzierten P-Zufuhren und eventuell P-fixierenden Behandlungen bedürfen. [source] Temperature functions of the rate coefficients of net N mineralization in sandy arable soils.JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2004Part I. Derivation from laboratory incubations Abstract This study aimed to experimentally determine adequate temperature functions for the rate coefficients of net N mineralization in sandy arable soils from NW Germany. Long-term laboratory incubations were carried out in seven sandy arable soils at 3°C, 10°C, 19°C, 28°C, and 35°C in order to derive the rate coefficients of a simultaneous two-pool first-order kinetic equation. Thereby we differentiated between a small, fast mineralizable N pool, comprising mainly fresh residues, and a larger, slowly mineralizable N pool of old, humified organic matter. The rate coefficients were plotted against temperature, and fits of several different functions were tested: Arrhenius, Q10, and multiple non-mechanistic equations. The two derived rate coefficients showed very different temperature functions. Especially in critical temperature ranges (<5/10°C, >30/35°C) common Q10 functions failed to fit well, and, only below 10°C, the Arrhenius functions were in agreement with mean measured rate coefficients. Over the studied temperature range, only relatively complex, multiple equations could adequately account for the observed patterns. In addition, temperature functions that have been derived earlier from loess soils from NW Germany were found not to be transferable to the sandy arable soils studied. Thus, the results strongly question the use of the same Arrhenius or Q10 function or the same rate modifying factor for different N pools as well as for different soils as is generally done in models. Evaluations with field measurements of net N mineralization in part II of the paper (Heumann and Böttcher, 2004) will show which functions perform best in the field. Die Temperaturfunktionen der Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböde nI. Ableitung aus Laborinkubationen Untersuchungsziel war die experimentelle Bestimmung adäquater Temperaturfunktionen für die Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböden NW-Deutschlands. Anhand von Langzeit-Laborinkubationen bei 3, 10, 19, 28 und 35,°C wurden für sieben sandige Ackerböden die Reaktionskoeffizienten zweier N-Pools mit Reaktionskinetik erster Ordnung ermittelt. Dadurch konnte zwischen einem kleineren, schnell mineralisierbaren N-Pool, der hauptsächlich frische Residuen umfasst, und einem größeren, langsam mineralisierbaren N-Pool aus überwiegend alter humifizierter organischer Substanz unterschieden werden. Die ermittelten Reaktionskoeffizienten wurden gegen die Temperatur aufgetragen und verschiedene Funktionen angepasst: Arrhenius-, Q10 - und multiple nicht-mechanistische Gleichungen. Die Temperaturfunktionen der beiden Reaktionskoeffizienten unterschieden sich stark. Besonders innerhalb kritischer Temperaturbereiche (<5/10,°C, >30/35,°C) war die Übereinstimmung üblicher Q10 -Funktionen schlecht, und nur unterhalb von 10,°C stimmten die Arrhenius-Funktionen mit den mittleren gemessenen Reaktionskoeffizienten überein. Über den gesamten untersuchten Temperaturbereich konnten nur relativ komplexe, multiple Gleichungen die beobachteten Verläufe angemessen nachzeichnen. Weiterhin waren die Temperaturfunktionen, die ehemals an norddeutschen Lössböden ermittelt wurden, nicht auf die untersuchten sandigen Ackerböden übertragbar. Daher stellen die Ergebnisse den Gebrauch derselben Arrhenius- oder Q10 -Funktion sowie gleicher Ratenfaktoren für verschiedene N-Pools und auch für verschiedene Böden stark in Frage. In Teil II der Arbeit (Heumann and Böttcher, 2004) wird anhand einer Überprüfung mit Messungen der N-Nettomineralisation im Feld gezeigt, welche Funktionen die beste Übereinstimmung im Freiland erbringen. [source] Temperature functions of the rate coefficients of net N mineralization in sandy arable soils.JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2004Part II. Abstract The aim of this study was to evaluate experimentally derived temperature functions for the rate coefficients of net N mineralization in sandy arable soils from NW Germany via field measurements. In part I of this paper (Heumann and Böttcher, 2004), different temperature functions for the rate coefficients of a two-pool first-order kinetic equation were derived by long-term laboratory incubations at 3°C to 35°C. In this paper, field net N mineralization during winter of 25 plots was measured in undisturbed soil columns with a diameter of 20,cm to the depth of the Ap horizon. Mean simulated net N mineralization with the most adequate multiple functions corresponded also best with the mean of the measured values despite of an overestimation of about 10%. Distinctly larger deviations under use of other temperature functions (Arrhenius, Q10) were directly related to their deviations from mean, experimentally derived rate coefficients. Simulated net N mineralization in the soil columns was significantly correlated with measured values, regardless of the temperature functions. Yet the goodness of fit was generally relatively low due to the spatial variability of measured net N mineralization within replicate soil columns, although the mean CV (38%) was by far not extraordinary. The pool of slowly mineralizable N contributed considerably to net N mineralization during four to five winter months, on an average 10.0 kg N ha,1, about one third of total simulated N mineralization. Sometimes, it contributed even 21.3 kg N ha,1, which is almost sufficient to reach the EU drinking-water limit for nitrate in these soils. Simulations with widely used functions that were once derived from loess soils overestimated mineralization from pool Nslow in the studied sandy arable soils by a factor of two. Die Temperaturfunktionen der Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböde nII. Überprüfung anhand von Mineralisationsmessungen im Freiland Ziel dieser Untersuchung war die Überprüfung experimentell ermittelter Temperaturfunktionen für die Reaktionskoeffizienten der N-Nettomineralisation in sandigen Ackerböden NW-Deutschlands anhand von Freilandmessungen. In Teil I der Arbeit (Heumann and Böttcher, 2004) wurden verschiedene Temperaturfunktionen für die Reaktionskoeffizienten zweier N-Pools mit Reaktionskinetik erster Ordnung mittels Langzeit-Laborinkubationen bei 3 bis 35°C bestimmt. In diesem Artikel wurde von 25 Plots die winterliche N-Nettomineralisation im Freiland in ungestörten Bodensäulen mit einem Durchmesser von 20,cm bis zur Tiefe des Ap-Horizontes gemessen. Im Mittel gaben die Simulationen mit den am besten passenden, multiplen Funktionen die Messergebnisse auch am besten wieder, trotz einer Überschätzung um etwa 10%. Deutlich größere Abweichungen bei Benutzung anderer Temperaturfunktionen (Arrhenius, Q10) standen in direkter Beziehung zu deren Abweichungen von den mittleren, experimentell ermittelten Reaktionskoeffizienten. Die simulierte N-Nettomineralisation war unabhängig von den Temperaturfunktionen signifikant mit den Messergebnissen korreliert. Jedoch war die Güte der Anpassung im Allgemeinen relativ niedrig aufgrund der räumlichen Variabilität der gemessenen N-Nettomineralisation innerhalb der einzelnen Säulen eines Plots, obwohl der mittlere CV (38%) bei weitem nicht außergewöhnlich war. Der langsam mineralisierbare N-Pool trug beträchtlich zur N-Nettomineralisation innerhalb von vier bis fünf Wintermonaten bei, durchschnittlich 10,0 kg N ha,1, etwa ein Drittel der gesamten simulierten N-Mineralisation. In manchen Böden waren es sogar 21,3 kg N ha,1, was fast ausreicht, um den EU-Trinkwassergrenzwert für Nitrat in diesen Böden zu erreichen. Simulationen mit häufig benutzten Funktionen, die ursprünglich an Lössböden ermittelt wurden, überschätzten die Mineralisation aus dem Pool Nslow in den untersuchten Sandböden um den Faktor zwei. [source] Nitrogen biomarkers and their fate in soil,JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2003Wulf Amelung Abstract More than 90,% of the nitrogen (N) in soils can be organically bound, but the mechanisms and rates by which it is cycled have eluded researchers. The objective of this research was to contribute to a better understanding of the origin and transformation of soil organic N (SON) by using amino sugars and the enantiomers of amino acids as markers for microbial residues and/or aging processes. Studied samples presented here comprised (1) soil transects across different climates, (2) arable soils with different duration of cropping, and (3) radiocarbon-dated soil profiles. The results suggested that increased microbial alteration of SON temporarily results in a sequestration of N in microbial residues, which are mineralized at later stages of SON decomposition. Microorganisms increasingly sequestered N within intact cell wall residues as frost periods shortened. At a mean annual temperature above 12,15,°C, these residues were mineralized, probably due to limitations in additional substrates. Breaking the grassland for cropping caused rapid SON losses. Microbial residues were decomposed in preference to total N, this effect being enhanced at higher temperatures. Hence, climate and cultivation interactively affected SON dynamics. Nevertheless, not all SON was available to soil microorganisms. In soil profiles, L-aspartic acid and L-lysine slowly converted into their D-form, for lysine even at a similar rate in soils of different microbial activity. Formation of D-aspartate with time was, therefore, induced by microorganisms while that of D-lysine was not. The racemization of the two amino acids indicates that SON not available to microorganisms ages biotically and abiotically. In native soils, the latter is conserved for centuries, despite N deficiency frequently occurring in living terrestrial environments. Climate was not found to affect the fate of old protein constituents in surface soil. When native grassland was broken for cropping, however, old SON constituents had become available to microorganisms and were degraded. Stickstoff-Biomarker und ihre Dynamik im Boden Über 90,% des Stickstoffs im Boden können organisch gebunden sein. Um zu einem besseren Verständnis der Norg -Dynamik im Boden beitragen zu können, analysierte ich Aminozucker und Aminosäure-Enantiomere als Marker für mikrobielle N-Rückstände und/oder Alterungsprozesse von Norg im Boden. Das hier vorgestellte Untersuchungsmaterial umfasste (1) Bodentransekte entlang unterschiedlicher Klimate, (2) Ackerböden mit verschiedener Nutzungsdauer und (3) 14C-datierte Bodenprofile. Die Ergebnisse zeigten, dass mit fortschreitender Umwandlung des Norg mikrobielle N-Rückstände nur vorübergehend im Boden akkumulieren, da sie in späteren Abbauphasen wieder mineralisiert werden. Mikroorganismen bauten zunehmend N in intakte Zellwandrückstände ein, wenn sich die Frostperioden verkürzten. Bei einer Jahresmitteltemperatur über 12,15,°C sank der Beitrag mikrobieller Rückstände zum N-Gehalt, vermutlich weil Mikroorganismen diese mangels anderer Substrate verstärkt mineralisierten. Umbrüche von Gras- zu Ackerland führten zu raschen N-Verlusten. Mikrobielle N-Rückstände wurden bevorzugt abgebaut, ein Effekt, den höhere Temperaturen verstärkten. Demnach steuerte das Klima die Intensität von Nutzungseffekten auf die Norg -Dynamik. Doch nicht der gesamte Norg war für Mikroorganismen zugänglich. Der D-Gehalt von Asparaginsäure und Lysin nahm mit steigendem Alter der organischen Bodensubstanz zu, Lysin racemisierte in den verschiedenen Böden sogar mit gleicher Geschwindigkeit. Anders als die Bildung von D-Asparaginsäure wurde die von Lysin also nicht durch Mikroorganismen beeinflusst. Die Racemisierung der beiden Aminosäuren deutet deshalb darauf hin, dass nicht-bioverfügbare Norg -Bestandteile biotisch und abiotisch im Boden altern. Klimaeinwirkungen auf den Verbleib alter Proteinrückstände ließen sich nicht feststellen. Mit Umbruch von Gras- zu Ackerland erhielten Mikroorganismen allerdings Zugang zu alten Norg -Verbindungen und bauten diese ab. [source] Effect of phosphate fertilization on crop yield and soil phosphorus status,JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2003Anne Gallet Abstract To evaluate the effect of three phosphorus (P) fertilization regimes (no P, P input equivalent to P off-take by crops, P input higher than P off-take) on crop yield, P uptake, and soil P availability, seven field experiments (six in crop rotations, one under permanent grassland) were conducted in Switzerland during nine years (six trials) or 27 years (one trial). Soil total P (Pt), inorganic P (Pi), organic P (Po), and the amount of isotopically exchangeable soil P were measured in the 0,20,cm and 30,50,cm layers of the arable soils and in the 0,10,cm layer of the permanent grassland soil. Omitting P fertilization resulted in significant yield decreases only in one field crop trial as the amount of P isotopically exchangeable within one minute (E1min) reached values lower than 5 mg P (kg soil),1. In the absence of P fertilization Pi decreased on average from 470 to 410 mg P (kg soil),1 in the upper horizon of 6 sites while Po decreased only at two sites (from 510 to 466 mg P (kg soil),1 on average). In all the treatments of the trials started in 1989 the E1min values of the upper horizon decreased on average from 15.6 to 7.4 mg P (kg soil),1 between 1989 and 1998. These decreases were also observed when P inputs were higher than crops needs, showing that in these soils the highest P inputs were not sufficient to maintain the high initial available P levels. Finally for the six arable trials the values of the isotopic exchange kinetics parameters (R/r1, n, CP) and P exchangeable within 1 minute (E1min) at the end of the experiment could be estimated from the values measured at the beginning of trial and the cumulated P balance. Der Einfluss der Phosphordüngung auf den Pflanzenertrag und den Phosphorstatus des Bodens Die Begrenzung der Düngung mit Phosphat (P) bei Böden, die bereits hohe Gehalte an verfügbarem P aufweisen, kann zur Verringerung der P-Verluste in Oberflächen- und Grundwasser beitragen. Sieben Feldversuche (6 Versuche mit Ackerkulturen, 1 Versuch mit Dauerwiese) wurden während 9 Jahren (6 Versuche) resp. 27 Jahren (1 Versuch) durchgeführt mit dem Ziel, den Einfluss von drei Düngungsraten (keine P-Gabe, P-Gabe entsprechend dem P-Entzug durch die Pflanzen und P-Gabe höher als der P-Entzug durch die Pflanzen) auf Pflanzenertrag, P-Aufnahme und P-Verfügbarkeit zu studieren. Die Gehalte an anorganischem P (Pi) und organischem P (Po), sowie deren Summe (Pt) und die Gehalte an isotopisch austauschbarem P wurden in den Bodentiefen von 0,20,cm und 30,50,cm der ackerbaulichen Versuche und in einer Bodentiefe von 0,10,cm in der Dauerwiese gemessen. Der Verzicht auf P-Düngung führte nur in einem der ackerbaulichen Versuche zu einer signifikanten Abnahme des Pflanzenertrags, wobei der Gehalt an isotopisch austauschbarem P (E1min) unter 5 mg P (kg Boden),1 fiel. Pi sank bei Verzicht auf P-Düngung im oberen Horizont von 6 Böden durchschnittlich von 470 auf 410 mg P (kg Boden),1, während Po nur in 2 Böden absank (durchschnittlich von 510 auf 466 mg P (kg Boden),1). Ueber alle Düngungsverfahren jener Versuche, die 1989 begonnen hatten, sank E1min im oberen Horizont von 1989 bis 1998 durchschnittlich von 15.6 auf 7.4 mg P (kg Boden),1. Die Abnahme wurde auch beobachtet, wenn die P-Gabe höher war als der P-Entzug durch die Pflanzen, was zeigt, dass in diesen Böden selbst die höchste P-Gabe nicht genügte, um den ursprünglich hohen Gehalt an verfügbarem P aufrecht zu erhalten. Schließlich wurden in den 6 ackerbaulichen Versuchen die Parameter der Isotopenaustauschkinetik (R/r1, n, CP) und E1min am Ende des Versuches mit den ursprünglichen Werten zu Beginn des Versuchs verglichen. Es ergaben sich signifikante Beziehungen zwischen den Werten am Ende des Versuchs einerseits und den ursprünglichen Werten und der P-Bilanz andererseits. [source] Variations in the contents of heavy metals in arable soils of a major urban wetland inlet drainage system of Lake Victoria, UgandaLAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 2 2010Jolocam Mbabazi Abstract Little is known about the effects of urbanization on the chemical quality of soils in suburban wetland inlet drainage systems to the Uganda side of Lake Victoria, on which food crops are extensively grown. It is feared that pollution in the soils might eventually enter food chains through such crops being consumed by urban populations unaware of their occurrence. Soil samples were collected from cultivated areas of a major wetland drainage system (Nakivubo Channel), at Kampala, Ubanda, near Lake Victoria and from a rural control wetland site (Senge). The soil from this site had similar properties as those from the urban test site (i.e., soil texture; porosity; humus content). Analysis of heavy metals with atomic absorption spectrophotometry (AAS) yielded the following soil concentration ranges: manganese (190,780), cadmium (<0.001,1.0), zinc (6.0,10.0) and lead (10,20 mg kg,1) dry weight for the control site, and 450,900, 1.0,2.0, 131,185, 40,60 mg kg,1 dry weight, respectively, for the urban wetland, indicative of relatively heavy metal pollution in the suburban drainage system. Heavy metal levels in cocoyam (Colocasia Esculenta) and sugarcane (Saccharum Officinarum) grown on both wetland soils also were evaluated via AAS with a modified wet-acid-digestion technique. The results highlighted high cadium and lead levels (P , 0.0003) in the crops from urban wetland cultivation. Cadmium and lead concentrations in cocoyam from urban wetland soils exceeded those from the control site by 0.17 and 3.54 mg kg,1, respectively. The corresponding results for sugarcane indicated a similar increase of 0.56 and 2.14 mg kg,1 of juice extract. Cadmium and lead levels in both urban wetland crops were higher than the maximum permissible limits of the Codex Alimentarius Commission, indicating that these concentrations pose potential health risks to urban consumers, and call for early counter-measures to combat urban pollution entering the lake. [source] Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soilsPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 6 2006Pirkko Laitinen Abstract The fate of five herbicides (glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron) was studied in two Finnish sugar beet fields for 26 months. Soil types were sandy loam and clay. Two different herbicide-tolerant sugar beet cultivars and three different herbicide application schedules were used. Meteorological data were collected throughout the study and soil properties were thoroughly analysed. An extensive data set of herbicide residue concentrations in soil was collected. Five different soil depths were sampled. The study was carried out using common Finnish agricultural practices and represents typical sugar beet cultivation conditions in Finland. The overall observed order of persistence was ethofumesate > glyphosate > phenmedipham > metamitron > glufosinate-ammonium. Only ethofumesate and glyphosate persisted until the subsequent spring. Seasonal variation in herbicide dissipation was very high and dissipation ceased almost completely during winter. During the 2 year experiment no indication of potential groundwater pollution risk was obtained, but herbicides may cause surface water pollution. Copyright © 2006 Society of Chemical Industry [source] |