Arabidopsis Roots (arabidopsi + root)

Distribution by Scientific Domains


Selected Abstracts


The FRO2 ferric reductase is required for glycine betaine's effect on chilling tolerance in Arabidopsis roots

PHYSIOLOGIA PLANTARUM, Issue 2 2008
John Einset
FRO2 (At1g01580) codes for an NADPH-dependent ferric reductase in plasma membranes of root epidermal cells with a demonstrated role in iron uptake by plants. Ferric reductase activity has been shown to be the rate-limiting step for iron uptake in strategy I plants like Arabidopsis and in rice, but it has been unclear whether FRO genes have other physiological functions. We hypothesized that FRO2 was involved in chilling stress tolerance because its expression was upregulated by treatment of plants with glycine betaine (GB), a chemical that prevents reactive oxygen species (ROS) signaling in chilling stress. This idea was confirmed by showing that the FRO2 null mutant frd1-1 failed to respond to GB in chilling assays either in relation to root growth recovery or inhibition of ROS accumulation. Measurements of ferric reductase activity in wild-type plants treated with GB before chilling showed no significant GB effect compared with controls. In addition, 35S- FRO2 transgenics with elevated mRNA levels did not have improved chilling tolerance. However, ferric reductase activity in wild-type plants or 35S- FRO2 transgenics pretreated with GB was several-fold higher after chilling compared with non-pretreated controls. These experiments identify a new physiological function for FRO2, i.e. blocking ROS accumulation during chilling. They also suggest that GB has a major effect on FRO2 activity posttranscriptionally in the cold. [source]


N -acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana

PLANT CELL & ENVIRONMENT, Issue 10 2008
RANDY ORTÍZ-CASTRO
ABSTRACT N -acyl-homoserine lactones (AHLs) belong to a class of bacterial quorum-sensing signals important for bacterial cell-to-cell communication. We evaluated Arabidopsis thaliana growth responses to a variety of AHLs ranging from 4 to 14 carbons in length, focusing on alterations in post-embryonic root development as a way to determine the biological activity of these signals. The compounds affected primary root growth, lateral root formation and root hair development, and in particular, N -decanoyl-HL (C10-HL) was found to be the most active AHL in altering root system architecture. Developmental changes elicited by C10-HL were related to altered expression of cell division and differentiation marker lines pPRZ1:uidA, CycB1:uidA and pAtEXP7:uidA in Arabidopsis roots. Although the effects of C10-HL were similar to those produced by auxins in modulating root system architecture, the primary and lateral root response to this compound was found to be independent of auxin signalling. Furthermore, we show that mutant and overexpressor lines for an Arabidopsis fatty acid amide hydrolase gene (AtFAAH) sustained altered growth response to C10-HL. All together, our results suggest that AHLs alter root development in Arabidopsis and that plants posses the enzymatic machinery to metabolize these compounds. [source]


PKS1 plays a role in red-light-based positive phototropism in roots

PLANT CELL & ENVIRONMENT, Issue 6 2008
MARIA LIA MOLAS
ABSTRACT Aerial parts of plants curve towards the light (i.e. positive phototropism), and roots typically grow away from the light (i.e. negative phototropism). In addition, Arabidopsis roots exhibit positive phototropism relative to red light (RL), and this response is mediated by phytochromes A and B (phyA and phyB). Upon light stimulation, phyA and phyB interact with the phytochrome kinase substrate (PKS1) in the cytoplasm. In this study, we investigated the role of PKS1, along with phyA and phyB, in the positive phototropic responses to RL in roots. Using a high-resolution feedback system, we studied the phenotypic responses of roots of phyA, phyB, pks1, phyA pks1 and phyB pks1 null mutants as well as the PKS1- overexpressing line in response to RL. PKS1 emerged as an intermediary in the signalling pathways and appears to promote a negative curvature to RL in roots. In addition, phyA and phyB were both essential for a positive response to RL and act in a complementary fashion. However, either photoreceptor acting without the other results in negative curvature in response to red illumination so that the mode of action differs depending on whether phyA and phyB act independently or together. Our results suggest that PKS1 is part of a signalling pathway independent of phyA and phyB and that PKS1 modulates RL-based root phototropism. [source]


Elongation and gravitropic responses of Arabidopsis roots are regulated by brassinolide and IAA

PLANT CELL & ENVIRONMENT, Issue 6 2007
TAE-WUK KIM
ABSTRACT Exogenously applied brassinolide (BL) increased both gravitropic curvature and length of primary roots of Arabidopsis at low concentration (10,10 M), whereas at higher concentration, BL further increased gravitropic curvature while it inhibited primary root growth. BRI1-GFP plants possessing a high steady-state expression level of a brassinosteroid (BR) receptor kinase rendered the plant's responses to gravity and root growth more sensitive, while BR-insensitive mutants, bri1-301 and bak1, delayed root growth and reduced their response to the gravitropic stimulus. The stimulatory effect of BL on the root gravitropic curvature was also enhanced in auxin transport mutants, aux1-7 and pin2, relative to wild-type plants, and increasing concentration of auxin attenuated BL-induced root sensitivity to gravity. Interestingly, IAA treatment to the roots of bri1-301 and bak1 plants or of plants pretreated with a BL biosynthetic inhibitor, brassinazole, increased their sensitivity to gravity, while these treatments for the BL-hypersensitive transgenic plants, BRI1-GFP and 35S-BAK1, were less effective. Expression of a CYP79B2 gene, encoding an IAA biosynthetic enzyme, was suppressed in BL-hypersensitive plant types and enhanced in BL-insensitive or -deficient plants. In conclusion, our results indicate that BL interacts negatively with IAA in the regulation of plant gravitropic response and root growth, and its regulation is achieved partly by modulating biosynthetic pathways of the counterpart hormone. [source]


Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling

THE PLANT JOURNAL, Issue 6 2009
Jin Suk Lee
Summary Mitogen-activated protein kinase (MAPK) phosphatases are important negative regulators in the MAPK signaling pathways responsible for many essential processes in plants, including development, stress management and hormonal responses. A mutation in INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5), which is predicted to encode a dual-specificity MAPK phosphatase, was previously reported to confer reduced sensitivity to auxin and ABA in Arabidopsis roots. To further characterize IBR5, and to understand how it might help integrate MAPK cascades with hormone signaling, we searched for IBR5-interacting MAPKs. Yeast two-hybrid assays, in vitro binding assays and in vivo protein co-immunoprecipitation studies demonstrated that MPK12 and IBR5 are physically coupled. The C-terminus of MPK12 appears to be essential for its interaction with IBR5, and in vitro dephosphorylation and immunocomplex kinase assays indicated that activated MPK12 is efficiently dephosphorylated and inactivated by IBR5. MPK12 and IBR5 mRNAs are both widely expressed across Arabidopsis tissues, and at the subcellular level each protein is predominantly localized in the nucleus. In transgenic plants with reduced expression of the MPK12 gene, root growth is hypersensitive to exogenous auxins, but shows normal ABA sensitivity. MPK12 suppression in an ibr5 background partially complements the ibr5 auxin-insensitivity phenotype. Our results demonstrate that IBR5 is a bona fide MAPK phosphatase, and suggest that MPK12 is both a physiological substrate of IBR5 and a novel negative regulator of auxin signaling in Arabidopsis. [source]


A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana

THE PLANT JOURNAL, Issue 1 2007
Bationa Shahollari
Summary Piriformospora indica, a basidiomycete of the Sebacinaceae family, promotes the growth, development and seed production of a variety of plant species. Arabidopsis plants colonized with the fungus produce 22% more seeds than uncolonized plants. Deactivating the Arabidopsis single-copy gene DMI-1, which encodes an ion carrier required for mycorrihiza formation in legumes, does not affect the beneficial interaction between the two symbiotic partners. We used cellular and molecular responses initiated during the establishment of the interaction between P. indica and Arabidopsis roots to isolate mutants that fail to respond to the fungus. An ethylmethane sulfonate mutant (Piriformospora indica - insensitive-2; pii-2), and a corresponding insertion line, are impaired in a leucine-rich repeat protein (At1g13230). The protein pii-2, which contains a putative endoplasmic reticulum retention signal, is also found in Triton X-100-insoluble plasma membrane microdomains, suggesting that it is present in the endoplasmic reticulum/plasma membrane continuum in Arabidopsis roots. The microdomains also contain an atypical receptor protein (At5g16590) containing leucine-rich repeats, the message of which is transiently upregulated in Arabidopsis roots in response to P. indica. This response is not detectable in At1g13230 mutants, and the protein is not detectable in the At1g13230 mutant microdomains. Partial deactivation of a gene for a sphingosine kinase, which is required for the biosynthesis of sphingolipid found in plasma membrane microdomains, also affects the Arabidopsis/P. indica interaction. Thus, pii-2, and presumably also At5g16590, two proteins present in plasma membrane microdomains, appear to be involved in P. indica -induced growth promotion and enhanced seed production in Arabidopsis thaliana. [source]


Identification of a novel cis -acting element conferring sulfur deficiency response in Arabidopsis roots

THE PLANT JOURNAL, Issue 3 2005
Akiko Maruyama-Nakashita
Summary SULTR1;1 high-affinity sulfate transporter is highly regulated in the epidermis and cortex of Arabidopsis roots responding to sulfur deficiency (,S). We identified a novel cis -acting element involved in the ,S-inducible expression of sulfur-responsive genes in Arabidopsis. The promoter region of SULTR1;1 was dissected for deletion and gain-of-function analysis using luciferase (LUC) reporter gene in transgenic Arabidopsis. The 16-bp sulfur-responsive element (SURE) from ,2777 to ,2762 of SULTR1;1 promoter was sufficient and necessary for the ,S-responsive expression, which was reversed when supplied with cysteine and glutathione (GSH). The SURE sequence contained an auxin response factor (ARF) binding sequence (GAGACA). However, SURE was not responsive to naphthalene acetic acid, indicating its specific function in the sulfur response. The base substitution analysis indicated the significance of a 5-bp sequence (GAGAC) within the conserved ARF binding site as a core element for the ,S response. Microarray analysis of early ,S response in Arabidopsis roots indicated the presence of SURE core sequences in the promoter regions of ,S-inducible genes on a full genome GeneChip array. It is suggested that SURE core sequences may commonly regulate the expression of a gene set required for adaptation to the ,S environment. [source]