Arabidopsis Plants (arabidopsi + plant)

Distribution by Scientific Domains

Kinds of Arabidopsis Plants

  • transgenic Arabidopsi plant


  • Selected Abstracts


    PPF1 May Suppress Plant Senescence via Activating TFL1 in Transgenic Arabidopsis Plants

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 4 2008
    Da-Yong Wang
    Abstract Senescence, a sequence of biochemical and physiological events, constitutes the final stage of development in higher plants and is modulated by a variety of environmental factors and internal factors. PPF1 possesses an important biological function in plant development by controlling the Ca2+ storage capacity within chloroplasts. Here we show that the expression of PPF1 might play a pivotal role in negatively regulating plant senescence as revealed by the regulation of overexpression and suppression of PPF1 on plant development. Moreover, TFL1, a key regulator in the floral repression pathway, was screened out as one of the downstream targets for PPF1 in the senescence-signaling pathway. Investigation of the senescence-related phenotypes in PPF1(,) tfl1-1 and PPF1(+) tfl1-1 double mutants confirmed and further highlighted the relation of PPF1 with TFL1 in transgenic plants. The activation of TFL1 expression by PPF1 defines an important pathway possibly essential for the negative regulation of plant senescence in transgenic Arabidopsis. [source]


    Developing transgenic arabidopsis plants to be metal-specific bioindicators

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2003
    Beth A. Krizek
    Abstract Deoxyribonucleic acid (DNA) microarrays provide a means to assess genome-wide expression patterns after exposure of an organism to different xenobiotics. Potential uses for this technology include identification of unknown toxicants, assessment of toxicity of new compounds, and characterization of the cellular mechanisms of toxicant action. Here we describe another use of DNA microarrays in toxicant-specific gene discovery. Combining results from two DNA microarray experiments, we have identified genes from the model plant Arabidopsis thaliana that are induced in response to one but not other heavy metals. The promoters of these genes should be useful in developing metal-specific transgenic biomonitors. To test this idea, we have fused the promoter of one of the newly identified Ni-inducible genes (AHB1) to the ,-glucuronidase (GUS) reporter gene. Arabidopsis plants containing the AHB1::GUS transgene show reporter gene activity when they are grown on media containing Ni but not when grown on media containing Cd, Cu, Zn, or without added metals. Thus, this approach has resulted in the creation of a transgenic strain of Arabidopsis that can report on the presence and concentration of Ni in plant growth media. Such transgenic models can serve as cheap and efficient biomonitors of bioavailable heavy metal contamination in soils and sediments. [source]


    Polyploidy-Associated Genomic Instability in Arabidopsis thaliana

    GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 4 2010
    Yixing Wang
    Formation of polyploid organisms by fertilization of unreduced gametes in meiotic mutants is believed to be a common phenomenon in species evolution. However, not well understood is how species in nature generally exist as haploid and diploid organisms in a long evolutionary time while polyploidization must have repeatedly occurred via meiotic mutations. Here, we show that the ploidy increased for two consecutive generations due to unreduced but viable gametes in the Arabidopsis cyclin a1;2-2 (also named tardy asynchronousmeiosis-2) mutant, but the resultant octaploid plants produced progeny of either the same or reduced ploidy via genomic reductions during meiosis and pollen mitosis. Ploidy reductions through sexual reproduction were also observed in independently generated artificial octaploid and hexaploid Arabidopsis plants. These results demonstrate that octaploid is likely the maximal ploidy produced through sexual reproduction in Arabidopsis. The polyploidy-associated genomic instability may be a general phenomenon that constrains ploidy levels in species evolution. [source]


    W55a Encodes a Novel Protein Kinase That Is Involved in Multiple Stress Responses

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 1 2009
    Zhao-Shi Xu
    Abstract Protein kinases play crucial roles in response to external environment stress signals. A putative protein kinase, W55a, belonging to SNF1-related protein kinase 2 (SnRK2) subfamily, was isolated from a cDNA library of drought-treated wheat seedlings. The entire length of W55a was obtained using rapid amplification of 5, cDNA ends (5,-RACE) and reverse transcription-polymerase chain reaction(RT-PCR). It contains a 1 029 -bp open reading frame (ORF) encoding 342 amino acids. The deduced amino acid sequence of W55a had eleven conserved catalytic subdomains and one Ser/Thr protein kinase active-site that characterize Ser/Thr protein kinases. Phylogenetic analysis showed that W55a was 90.38% homologous with rice SAPK1, a member of the SnRK2 family. Using nullisomic-tetrasomic and ditelocentric lines of Chinese Spring, W55a was located on chromosome 2BS. Expression pattern analysis revealed that W55a was upregulated by drought and salt, exogenous abscisic acid, salicylic acid, ethylene and methyl jasmonate, but was not responsive to cold stress. In addition, W55a transcripts were abundant in leaves, but not in roots or stems, under environmental stresses. Transgenic Arabidopsis plants overexpressing W55a exhibited higher tolerance to drought. Based on these findings, W55a encodes a novel dehydration-responsive protein kinase that is involved in multiple stress signal transductions. [source]


    Expression of a High Mobility Group Protein Isolated from Cucumis sativus Affects the Germination of Arabidopsis thaliana under Abiotic Stress Conditions

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 5 2008
    Ji Young Jang
    Abstract Although high mobility group B (HMGB) proteins have been identified from a variety of plant species, their importance and functional roles in plant responses to changing environmental conditions are largely unknown. Here, we investigated the functional roles of a CsHMGB isolated from cucumber (Cucumis sativus L.) in plant responses to environmental stimuli. Under normal growth conditions or when subjected to cold stress, no differences in plant growth were found between the wild-type and transgenic Arabidopsis thaliana overexpressing CsHMGB. By contrast, the transgenic Arabidopsis plants displayed retarded germination compared with the wild-type plants when grown under high salt or dehydration stress conditions. Germination of the transgenic plants was delayed by the addition of abscisic acid (ABA), implying that CsHMGB affects germination through an ABA-dependent way. The expression of CsHMGB had affected only the germination stage, and CsHMGB did not affect the seedling growth of the transgenic plants under the stress conditions. The transcript levels of several germination-responsive genes were modulated by the expression of CsHMGB in Arabidopsis. Taken together, these results suggest that ectopic expression of a CsHMGB in Arabidopsis modulates the expression of several germination-responsive genes, and thereby affects the germination of Arabidopsis plants under different stress conditions. [source]


    Cloning and Characterization of a Novel Purple Acid Phosphatase Gene (MtPAP1) from Medicago truncatula Barrel Medic

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 2 2006
    Kai Xiao
    Abstract A novel purple acid phosphatase gene (MtPAP1) was isolated from the model legume Medicago truncatula Barrel Medic. The cDNA was 1 698 bp in length with an open reading frame (ORF) of 1 398 bp capable of encoding an N-terminal signal peptide of 23 amino acids. The transcripts of MtPAP1 were mainly detected in leaves under high-phosphate conditions, whereas under low-phosphate conditions the transcript level was reduced in leaves and increased in roots, with the strongest hybridization signal detected in roots. A chimeric gene construct fusing MtPAP1 and GFP was made in which the fusion was driven by the CaMV35S promoter. Transgenic Arabidopsis plants carrying the chimeric gene constructs showed that the fusion protein was mainly located at the apoplast based on confocal microscopic analysis, showing that MtPAP1 could be secreted to the outside of the cell directed by the signal peptide at the N-terminal. The coding region of MtPAP1 without signal peptide was inserted into the prokaryotic expression vector pET-30a (+) and overexpressed in Escherichia coli BL21 (DE3). The acid phosphatase (APase) proteins extracted from bacterial culture were found largely based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An enzyme activity assay demonstrated that the APase activity in the transformed bacteria was 3.16-fold higher than that of control. The results imply that MtPAP1 functions to improve phosphorus acquisition in plants under conditions of phosphorus (P) stress. (Managing editor: Li-Hui Zhao) [source]


    Disruption of Cortical Microtubules by Overexpression of Green Fluorescent Protein-Tagged ,-Tubulin 6 Causes a Marked Reduction in Cell Wall Synthesis

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 1 2006
    David H. Burk
    Abstract It has been known that the transverse orientation of cortical microtubules (MTs) along the elongation axis is essential for normal cell morphogenesis, but whether cortical MTs are essential for normal cell wall synthesis is still not clear. In the present study, we have investigated whether cortical MTs affect cell wall synthesis by direct alteration of the cortical MT organization in Arabidopsis thaliana. Disruption of the cortical MT organization by expression of an excess amount of green fluorescent protein-tagged ,-tubulin 6 (GFP-TUA6) in transgenic Arabidopsis plants was found to cause a marked reduction in cell wall thickness and a decrease in the cell wall sugars glucose and xylose. Concomitantly, the stem strength of the GFP-TUA6 overexpressors was markedly reduced compared with the wild type. In addition, expression of excess GFP-TUA6 results in an alteration in cell morphogenesis and a severe effect on plant growth and development. Together, these results suggest that the proper organization of cortical MTs is essential for the normal synthesis of plant cell walls. (Managing editor: Wei Wang) [source]


    Extensin over-expression in Arabidopsis limits pathogen invasiveness

    MOLECULAR PLANT PATHOLOGY, Issue 6 2006
    GUO WEI
    SUMMARY The function of the cell wall protein extensin has been the subject of much speculation since it was first isolated over 40 years ago. In order to investigate the role of extensins in plant defence, we used the gain-of-function strategy to generate transgenic Arabidopsis plants over-expressing the EXT1 extensin gene. These were infected with the virulent bacterial pathogen Pseudomonas syringae DC3000 and symptom development was monitored. Lesions on the transgenics were on average five-fold smaller than those on the wild-type, did not increase in area over the time period of infection, accumulated a small bacterial load and showed very little chlorosis outside the lesion boundary. By contrast, lesions on the wild-type were large, spread to over 50% of the leaf area, continued to increase in size over the time course of the infection, accumulated a bacterial load 100-fold higher than that found in the transgenics, and showed a large chlorotic area outside the lesion boundary. SEM of lesions showed no evidence of bacteria at the lesion boundary in the extensin-over-expressing transgenics, whereas bacteria were always seen at the lesion boundary on the wild-type. Analysis of transgenics carrying an EXT1,GUS promoter,reporter fusion showed expression of GUS in a ring around the boundary of the lesion. Basal defences and signal transduction pathways involved in plant defence were not perturbed in the transgenics, as shown by the analysis of the expression of PR1 and PDF1.2 genes. These results show that extensin over-expression limits pathogen invasiveness. [source]


    OsNOA1/RIF1 is a functional homolog of AtNOA1/RIF1: implication for a highly conserved plant cGTPase essential for chloroplast function

    NEW PHYTOLOGIST, Issue 1 2010
    Hongjia Liu
    Summary ,The bacterial protein YqeH is a circularly permuted GTPase with homologs encoded by plant nuclear genomes. The rice homolog OsNOA1/RIF1 is encoded by the single-copy gene Os02g01440. OsNOA1/RIF1 is expressed in different tissues and is light-inducible. The OsNOA1/RIF1-EYFP fusion protein was targeted to chloroplasts in transgenic Arabidopsis plants. In addition, the rice homolog was able to rescue most of the growth phenotypes in an Arabidopsis rif1 mutant. ,Rice (Oryza sativa) OsNOA1/RIF1 RNAi mutant seedlings were chlorotic with reduced pigment contents and lower photosystem II (PSII) efficiency. However, the expressions of the chloroplast-encoded genes rbcL, atpB, psaA and psbA were not affected. By contrast, reduced abundance of the chloroplast 16S rRNA was observed in the mutant. ,Quantitative iTRAQ-LC-MS/MS proteomics investigations revealed proteome changes in the rice mutant consistent with the expected functional role of OsNOA1/RIF1 in chloroplast translation. The RNAi mutant showed significantly decreased expression levels of chloroplast-encoded proteins as well as nuclear-encoded components of chloroplast enzyme complexes. Conversely, upregulation of some classes of nonchloroplastic proteins, such as glycolytic and phenylpropanoid pathway enzymes, was detected. ,Our work provides independent indications that a highly conserved nuclear-encoded cGTPase of likely prokaryotic origin is essential for proper chloroplast ribosome assembly and/or translation in plants. [source]


    An illustrated gardener's guide to transgenic Arabidopsis field experiments

    NEW PHYTOLOGIST, Issue 2 2008
    Martin Frenkel
    Summary ,,Field studies with transgenic Arabidopsis lines have been performed over 8 yr, to better understand the influence that certain genes have on plant performance. Many (if not most) plant phenotypes cannot be observed under the near constant, low-stress conditions in growth chambers, making field experiments necessary. However, there are challenges in performing such experiments: permission must be obtained and regulations obeyed, the profound influence of uncontrollable biotic and abiotic factors has to be considered, and experimental design has to be strictly controlled. ,,The aim here is to provide inspiration and guidelines for researchers who are not used to setting up such experiments, allowing others to learn from our mistakes. ,, This is believed to be the first example of a ,manual' for field experiments with transgenic Arabidopsis plants. Many of the challenges encountered are common for all field experiments, and many researchers from ecological backgrounds are skilled in such methods. ,,There is huge potential in combining the detailed mechanistic understanding of molecular biologists with ecologists' expertise in examining plant performance under field conditions, and it is suggested that more interdisciplinary collaborations will open up new scientific avenues to aid analyses of the roles of genetic and physiological variation in natural systems. [source]


    Herbicidal cyanoacrylates with antimicrotubule mechanism of action

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 11 2005
    Stefan Tresch
    Abstract The herbicidal mode of action of the new synthetic cyanoacrylates ethyl (2Z)-3-amino-2-cyano-4-ethylhex-2-enoate (CA1) and its isopropyl ester derivative CA2 was investigated. For initial characterization, a series of bioassays was used indicating a mode of action similar to that of mitotic disrupter herbicides such as the dinitroaniline pendimethalin. Cytochemical fluorescence studies including monoclonal antibodies against polymerized and depolymerized tubulin and a cellulose-binding domain of a bacterial cellulase conjugated to a fluorescent dye were applied to elucidate effects on cell division processes including mitosis and microtubule and cell wall formation in maize roots. When seedlings were root treated with 10 µM of CA1 or CA2, cell division activity in meristematic root tip cells decreased within 4 h. The chromosomes proceeded to a condensed state of prometaphase, but were unable to progress further in the mitotic cycle. The compounds caused a complete loss of microtubular structures, including preprophase, spindle, phragmoplast and cortical microtubules. Concomitantly, in the cytoplasm, an increase in labelling of free tubulin was observed. This suggests that the herbicides disrupt polymerization and microtubule stability, whereas tubulin synthesis or degradation appeared not to be affected. In addition, cellulose labelling in cell walls of root tip cells was not influenced. The effects of CA1 and CA2 were comparable with those caused by pendimethalin. In transgenic Arabidopsis plants expressing a green fluorescent protein-microtubule-associated protein4 fusion protein, labelled arrays of cortical microtubules in living epidermal cells of hypocotyls collapsed within 160 min after exposure to 10 µM CA1 or pendimethalin. Moreover, a dinitroaniline-resistant biotype of goosegrass (Eleusine indica (L) Gaertn) with a point mutation in ,-tubulin showed cross-resistance against CA1 and CA2. The results strongly indicate that the cyanoacrylates are a new chemical class of herbicide which possess the same antimicrotubule mechanism of action as dinitroanilines, probably including interaction with the same binding site in ,-tubulin. Copyright © 2005 Society of Chemical Industry [source]


    The rice Mybleu transcription factor increases tolerance to oxygen deprivation in Arabidopsis plants

    PHYSIOLOGIA PLANTARUM, Issue 1 2007
    Monica Mattana
    Mybleu is a natural incomplete transcription factor of rice (Oryza sativa), consisting of a partial Myb repeat followed by a short leucine zipper. We previously showed its localization to the apical region of rice roots and coleoptiles. Specifically, in coleoptiles, Mybleu is expressed under both aerobic and anaerobic conditions, whereas in roots, it is expressed only under aerobic conditions. Mybleu is able to dimerize with canonical leucine zippers and to activate transcription selectively. To investigate Mybleu function in vivo, we transformed Arabidopsis thaliana and evaluated several morphological, physiological and biochemical parameters. In agreement with a hypothesized role of Mybleu in cell elongation in the differentiation zone, we found that the constitutive expression of this transcription factor in Arabidopsis induced elongation in the primary roots and in the internodal region of the floral stem; we also observed a modification of the root apex morphology in transformed lines. Based on the high expression of Mybleu in anaerobic rice coleoptiles, we studied the role of this transcription factor in transgenic plants grown under low-oxygen conditions. We found that overexpression of this transcription factor increased tolerance to oxygen deficit. In transgenic plants, this effect may depend both on the maintenance of a higher metabolism during stress and on the higher expression levels of certain genes involved in the anaerobic response. [source]


    SAG2 and SAG12 protein expression in senescing Arabidopsis plants

    PHYSIOLOGIA PLANTARUM, Issue 2 2003
    Vojislava Grbi
    During leaf senescence, nutrients are remobilized from the senescing tissues to the growing parts of the plant. Many senescence-associated genes (SAGs) were identified based on the induction of their transcripts. However, little is known about the protein expression of the corresponding genes. We have raised antibodies against two Arabidopsis SAGs, SAG2 and SAG12, which encode putative cysteine proteases. The SAG2 antibodies recognized a 29-kDa protein that was abundant in senescing leaves, but was also present at low levels in green tissues. SAG12 antibodies labelled a 38-kDa protein present only in senescent leaves. The protein expression of these SAGs parallels their mRNA expression patterns, indicating that control of SAG2 and SAG12 is at the level of transcription or transcript stability. In addition, we found that SAGs are induced during stem senescence with delayed kinetics of their expression relative to leaf expression, suggesting that age-dependent factor(s) regulating the onset of senescence in Arabidopsis may act in tissue-dependent manner. [source]


    Induction of systemic resistance in Arabidopsis thaliana in response to a culture filtrate from a plant growth-promoting fungus, Phoma sp.

    PLANT BIOLOGY, Issue 1 2009
    GS8-
    Abstract The plant growth-promoting fungus (PGPF), Phoma sp. GS8-3, isolated from a zoysia grass rhizosphere, is capable of protecting cucumber plants against virulent pathogens. This fungus was investigated in terms of the underlying mechanisms and ability to elicit systemic resistance in Arabidopsis thaliana. Root treatment of Arabidopsis plants with a culture filtrate (CF) from Phoma sp. GS8-3 elicited systemic resistance against the bacterial speck pathogen Pseudomonas syringae pv. tomato DC3000 (Pst), with restricted disease development and inhibited pathogen proliferation. Pathway-specific mutant plants, such as jar1 (jasmonic acid insensitive) and ein2 (ethylene insensitive), and transgenic NahG plants (impaired in salicylate signalling) were protected after application of the CF, demonstrating that these pathways are dispensable (at least individually) in CF-mediated resistance. Similarly, NPR1 interference in npr1 mutants had no effect on CF-induced resistance. Gene expression studies revealed that CF treatment stimulated the systemic expression of both the SA-inducible PR-1 and JA/ET-inducible PDF1.2 genes. However, pathogenic challenge to CF-treated plants was associated with potentiated expression of the PR-1 gene and down-regulated expression of the PDF1.2 gene. The observed down-regulation of the PDF1.2 gene in CF-treated plants indicates that there may be cross-talk between SA- and JA/ET-dependent signalling pathways during the pathogenic infection process. In conclusion, our data suggest that CF of Phoma sp. GS8-3 induces resistance in Arabidopsis in a manner where SA and JA/ET may play a role in defence signalling. [source]


    Immunolocalization of the PmSUC1 Sucrose Transporter in Plantago major Flowers and Reporter-Gene Analyses of the PmSUC1 Promoter Suggest a Role in Sucrose Release from the Inner Integument

    PLANT BIOLOGY, Issue 3 2007
    C. Lauterbach
    Abstract: This paper presents a detailed analysis of the PmSUC1 gene from Plantago major, of its promoter activity in Arabidopsis, and of the tissue specific localization of the encoded protein in Plantago. PmSUC1 promoter activity was detected in the innermost layer of the inner integument (the endothel) of Arabidopsis plants expressing the gene of the green fluorescent protein (GFP) under the control of the PmSUC1 promoter. This promoter activity was confirmed with a PmSUC1-specific antiserum that identified the PmSUC1 protein in the endothel of Plantago and of Arabidopsis plants expressing the PmSUC1 gene under the control of its own promoter. PmSUC1 promoter activity and PmSUC1 protein were also detected in pollen grains during maturation inside the anthers and in pollen tubes during and after germination. These results demonstrate that PmSUC1 is involved in sucrose partitioning to the young embryo and to the developing pollen and growing pollen tube. In the innermost cell layer of the inner integument, a tissue that delivers nutrients to the endosperm and the embryo, PmSUC1 may catalyze the release of sucrose into the apoplast. [source]


    Synthesis of enzymatically active human ,- l -iduronidase in Arabidopsis cgl (complex glycan-deficient) seeds

    PLANT BIOTECHNOLOGY JOURNAL, Issue 2 2006
    Willa L. Downing
    Summary As an initial step to develop plants as systems to produce enzymes for the treatment of lysosomal storage disorders, Arabidopsis thaliana wild-type (Col-0) plants were transformed with a construct to express human ,- l -iduronidase (IDUA; EC 3.2.1.76) in seeds using the promoter and other regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene. IDUA protein was easily detected on Western blots of extracts from the T2 seeds, and extracts contained IDUA activity as high as 2.9 nmol 4-methylumbelliferone (4 MU)/min/mg total soluble protein (TSP), corresponding to approximately 0.06 µg IDUA/mg TSP. The purified protein reacted with an antibody specific for xylose-containing plant complex glycans, indicating its transit through the Golgi complex. In an attempt to avoid maturation of the N-linked glycans of IDUA, the same IDUA transgene was introduced into the Arabidopsis cgl background, which is deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101), the first enzyme in the pathway of complex glycan biosynthesis. IDUA activity and protein levels were significantly higher in transgenic cgl vs. wild-type seeds (e.g. maximum levels were 820 nmol 4 MU/min/mg TSP, or 18 µg IDUA/mg TSP). Affinity-purified IDUA derived from cgl mutant seeds showed a markedly reduced reaction with the antibody specific for plant complex glycans, despite transit of the protein to the apoplast. Furthermore, gel mobility changes indicated that a greater proportion of its N-linked glycans were susceptible to digestion by Streptomyces endoglycosidase H, as compared to IDUA derived from seeds of wild-type Arabidopsis plants. The combined results indicate that IDUA produced in cgl mutant seeds contains glycans primarily in the high-mannose form. This work clearly supports the viability of using plants for the production of human therapeutics with high-mannose glycans. [source]


    Gene expression profiles of O3 -treated Arabidopsis plants

    PLANT CELL & ENVIRONMENT, Issue 9 2006
    NICOLA TOSTI
    ABSTRACT To analyse cellular response to O3, the tolerant Arabidopsis thaliana genotype Col-0 was exposed to O3 fumigation (300 ppb) for 6 h and the modulation of gene expression during the treatment (3 h after the beginning of the treatment, T3 h) and the recovery phase (6 h from the end of the treatment, T12 h) assessed by gene chip microarray and real-time reverse transcriptase (RT)-PCR analyses. The Arabidopsis transcriptional profile is complex, as new genes (i.e. reticuline oxidase) and pathways, other than those already reported as O3 -responsive, appear to be involved in the O3 response. The steady-state transcript levels of several WRKY genes were increased in O3 -treated plants and the W-box was the cis -element over-represented in the promoter region of T3 h up-regulated genes. The fact that the W-box element was also over-represented in almost all T3 h-induced receptor-like kinases (RLKs) suggests a WRKY-mediated control of RLKs under O3 stress and a mechanicistic similarity with the pathogen-induced transcriptional responses. We investigated the molecular and physiological implications of our findings in relation to O3 -induced plant stress response. [source]


    Citrus abscission and Arabidopsis plant decline in response to 5-chloro-3-methyl-4-nitro-1H -pyrazole are mediated by lipid signalling

    PLANT CELL & ENVIRONMENT, Issue 11 2005
    FERNANDO ALFEREZ
    ABSTRACT The compound 5-chloro-3-methyl-4-nitro-1H -pyrazole (CMNP) is a pyrazole-derivative that induces abscission selectively in mature citrus (Citrus sinensis) fruit when applied to the canopy and has herbicidal activity on plants when applied to roots. Despite the favourable efficacy of this compound, the mode of action remains unknown. To gain information about the mode of action of CMNP, the effect of application to mature citrus fruit and Arabidopsis thaliana roots was explored. Peel contact was essential for mature fruit abscission in citrus, whereas root drenching was essential for symptom development and plant decline in Arabidopsis. CMNP was identified as an uncoupler in isolated soybean (Glycine max) mitochondria and pea (Pisum sativum) chloroplasts and an inhibitor of alcohol dehydrogenase in citrus peel, but not an inhibitor of protoporphyrinogen IX oxidase. CMNP treatment reduced ATP content in citrus peel and Arabidopsis leaves. Phospholipase A2 (PLA2) and lipoxygenase (LOX) activities, and lipid hydroperoxide (LPO) levels increased in flavedo of citrus fruit peel and leaves of Arabidopsis plants treated with CMNP. An inhibitor of PLA2 activity, aristolochic acid (AT), reduced CMNP-induced increases in PLA2 and LOX activities and LPO levels in citrus flavedo and Arabidopsis leaves and greatly reduced abscission in citrus and delayed symptoms of plant decline in Arabidopsis. However, AT treatment failed to halt the reduction in ATP content. Reduction in ATP content preceded the increase in PLA2 and LOX activities, LPO content and the biological response. The results indicate a link between lipid signalling, abscission in citrus and herbicidal damage in Arabidopsis. [source]


    Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities

    PLANT CELL & ENVIRONMENT, Issue 4 2005
    BARBARA DE CONINCK
    ABSTRACT The genome of Arabidopsis thaliana contains six putative cell-wall type invertase genes (AtcwINV1-6). Heterologous expression of AtcwINV1, 3 and 6 cDNAs in Pichia pastoris revealed that the enzymes encoded by AtcwINV3 and 6 did not show invertase activity. Instead, AtcwINV3 is a 6-FEH and AtcwINV6 is a fructan exohydrolase (FEH) that can degrade both inulin and levan-type fructans. For AtcwINV6 it is proposed to use the term (6&1) FEH. In contrast, AtcwINV1 is a typical invertase. FEH activity was also detected in crude extracts of different parts of Arabidopsis. To verify that the FEH activity of AtcwINV3 and 6 were not artefacts of the heterologous expression system, the protein corresponding to AtcwINV3 was isolated from whole Arabidopsis plants and indeed showed only 6-FEH activity and no invertase activity. Although no fructans can be detected in Arabidopsis plants, it is shown that kestoses (trimers) can be synthesized in crude leaf extracts. The putative physiological significance of FEH in so-called non-fructan plants is discussed. [source]


    Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+ -associated opening of plasma membrane anion channels

    THE PLANT JOURNAL, Issue 3 2010
    Elena Jeworutzki
    Summary The perception of microbes by plants involves highly conserved molecular signatures that are absent from the host and that are collectively referred to as microbe-associated molecular patterns (MAMPs). The Arabidopsis pattern recognition receptors FLAGELLIN-SENSING 2 (FLS2) and EF-Tu receptor (EFR) represent genetically well studied paradigms that mediate defense against bacterial pathogens. Stimulation of these receptors through their cognate ligands, bacterial flagellin or bacterial elongation factor Tu, leads to a defense response and ultimately to increased resistance. However, little is known about the early signaling pathway of these receptors. Here, we characterize this early response in situ, using an electrophysiological approach. In line with a release of negatively charged molecules, voltage recordings of microelectrode-impaled mesophyll cells and root hairs of Col-0 Arabidopsis plants revealed rapid, dose-dependent membrane potential depolarizations in response to either flg22 or elf18. Using ion-selective microelectrodes, pronounced anion currents were recorded upon application of flg22 and elf18, indicating that the signaling cascades initiated by each of the two receptors converge on the same plasma membrane ion channels. Combined calcium imaging and electrophysiological measurements revealed that the depolarization was superimposed by an increase in cytosolic calcium that was indispensable for depolarization. NADPH oxidase mutants were still depolarized upon elicitor stimulation, suggesting a reactive oxygen species-independent membrane potential response. Furthermore, electrical signaling in response to either flg22 or elf 18 critically depends on the activity of the FLS2-associated receptor-like kinase BAK1, suggesting that activation of FLS2 and EFR lead to BAK1-dependent, calcium-associated plasma membrane anion channel opening as an initial step in the pathogen defense pathway. [source]


    Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O - and C -glucosyltransferases

    THE PLANT JOURNAL, Issue 6 2008
    Fernando Gandia-Herrero
    Summary Plants, as predominantly sessile organisms, have evolved complex detoxification pathways to deal with a diverse range of toxic chemicals. The elasticity of this stress response system additionally enables them to tackle relatively recently produced, novel, synthetic pollutants. One such compound is the explosive 2,4,6-trinitrotoluene (TNT). Large areas of soil and groundwater are contaminated with TNT, which is both highly toxic and recalcitrant to degradation, and persists in the environment for decades. Although TNT is phytotoxic, plants are able to tolerate low levels of the compound. To identify the genes involved in this detoxification process, we used microarray analysis and then subsequently characterized seven uridine diphosphate (UDP) glycosyltransferases (UGTs) from Arabidopsis thaliana (Arabidopsis). Six of the recombinantly expressed UGTs conjugated the TNT-transformation products 2- and 4-hydroxylaminodinitrotoulene, exhibiting individual bias for either the 2- or the 4-isomer. For both 2- and 4-hydroxylaminodinitrotoulene substrates, two monoglucose conjugate products, confirmed by HPLC-MS-MS, were observed. Further analysis indicated that these were conjugated by either an O - or C -glucosidic bond. The other major compounds in TNT metabolism, aminodinitrotoluenes, were also conjugated by the UGTs, but to a lesser extent. These conjugates were also identified in extracts and media from Arabidopsis plants grown in liquid culture containing TNT. Overexpression of two of these UGTs, 743B4 and 73C1, in Arabidopsis resulted in increases in conjugate production, and enhanced root growth in 74B4 overexpression seedlings. Our results show that UGTs play an integral role in the biochemical mechanism of TNT detoxification by plants. [source]


    ORTH/VIM proteins that regulate DNA methylation are functional ubiquitin E3 ligases

    THE PLANT JOURNAL, Issue 5 2008
    Edward Kraft
    Summary Appropriate methylation of genomes is essential for gene regulation. Here, we describe the six-member ORTHRUS (ORTH) gene family of Arabidopsis thaliana that plays a role in DNA methylation in vivo. ORTH1, ORTH5 are predicted to encode proteins that contain one plant homeodomain (PHD), two really interesting new gene (RING) domains, and one set ring associated (SRA) domain, whereas ORTHlike-1 encodes a protein with only one RING and SRA domain. cDNAs for ORTH1, ORTH2, ORTH5 and ORTHlike-1 were isolated, and when expressed as glutathione- S -transferase (GST) fusion proteins, were capable of promoting ubiquitylation in vitro with the E2 AtUBC11. ORTH1 promotes ubiquitylation when paired with additional AtUBC8 family members. ORTH1 proteins with substitutions in metal,ligand binding residues in each ORTH1 RING domain individually, and ORTH1 truncation derivatives lacking one or both RING domains, were tested for their ability to catalyze ubiquitylation in vitro. In these assays, either ORTH1 RING domain is capable of promoting ubiquitylation. The PHD alone is not active as an E3 ligase, nor is it required for ligase activity. GFP-ORTH1 and GFP-ORTH2 are nuclear-localized in transgenic Arabidopsis plants. Overexpression of ORTH1 or ORTH2 in Arabidopsis leads to an altered flowering time. Inspection of DNA methylation at FWA and Cen180 repeats revealed hypomethylation when ORTH proteins were overexpressed. Once initiated, a late-flowering phenotype persisted in the absence of the ORTH transgene, consistent with epigenetic effects at FWA. We conclude that ORTH proteins are E3 ligases mediating DNA methylation status in vivo. [source]


    The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants

    THE PLANT JOURNAL, Issue 4 2007
    Hui-Wen Wang
    Summary Soybean is one of the most important leguminous seed crops among the oil crops. Although the pathways for lipid biosynthesis have been identified, the factors that regulate the biosynthetic pathways at the transcriptional level are largely unknown. Here, we report our findings on the involvement of soybean Dof-type transcription factor genes in the regulation of the lipid content in soybean seeds. We identified 28 Dof-type transcription factor genes in soybean plants, and these genes displayed diverse patterns of expression in various organs. Seven flower/pod-specific genes and one constitutively expressed gene were further investigated. The proteins encoded by these seven genes were localized in the nucleus, and exhibited different abilities for transcriptional activation and DNA binding. Two genes, GmDof4 and GmDof11, were found to increase the content of total fatty acids and lipids in GmDof4 and GmDof11 transgenic Arabidopsis seeds. We also found that the 1000-seed weight was increased in the GmDof4 and GmDof11 transgenic plants. Using microarray and DNA binding analysis, we found that the two Dof-like proteins, GmDof4 and GmDof11, activated the acetyl CoA carboxylase gene and long-chain-acyl CoA synthetase gene, respectively, by direct binding to the cis -DNA elements in their promoter regions. In addition, both proteins downregulated the storage protein gene, CRA1, through direct binding. These results suggest that the two GmDof genes may augment the lipid content of soybean seeds by upregulating genes that are associated with the biosynthesis of fatty acids. [source]


    ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana

    THE PLANT JOURNAL, Issue 6 2007
    Jae-Heung Ko
    Summary Vascular plants evolved to have xylem that provides physical support for their growing body and serves as a conduit for water and nutrient transport. In a previous study, we used comparative-transcriptome analyses to select a group of genes that were upregulated in xylem of Arabidopsis plants undergoing secondary growth. Subsequent analyses identified a plant-specific NAC-domain transcription factor gene (ANAC012) as a candidate for genetic regulation of xylem formation. Promoter-GUS analyses showed that ANAC012 expression was preferentially localized in the (pro)cambium region of inflorescence stem and root. Using yeast transactivation analyses, we confirmed the function of ANAC012 as a transcriptional activator, and identified an activation domain in the C terminus. Ectopic overexpression of ANAC012 in Arabidopsis (35S::ANAC012 plants) dramatically suppressed secondary wall deposition in the xylary fiber and slightly increased cell-wall thickness in the xylem vessels. Cellulose compositions of the cell wall were decreased in the inflorescent stems and roots of 35S::ANAC012 plants, probably resulting from defects in xylary fiber formation. Our data suggest that ANAC012 may act as a negative regulator of secondary wall thickening in xylary fibers. [source]


    mRNA metabolism of flowering-time regulators in wild-type Arabidopsis revealed by a nuclear cap binding protein mutant, abh1

    THE PLANT JOURNAL, Issue 6 2007
    Josef M. Kuhn
    Summary The precise regulation of RNA metabolism has crucial roles in numerous developmental and physiological processes such as the induction of flowering in plants. Here we report the identification of processes associated with mRNA metabolism of flowering-time regulators in wild-type Arabidopsis plants, which were revealed by an early flowering mutation, abh1, in an Arabidopsis nuclear mRNA cap-binding protein. By using abh1 as an enhancer of mRNA metabolism events, we identify non-coding polyadenylated cis natural antisense transcripts (cis-NATs) at the CONSTANS locus in wild-type plants. Our analyses also reveal a regulatory function of FLC intron 1 during transcript maturation in wild type. Moreover, transcripts encoding the FLM MADS box transcription factor are subject to premature intronic polyadenylation in wild type. In each case, abh1 showed altered patterns in RNA metabolism in these events compared with wild type. Together, abh1 enhances steps in the RNA metabolism that allowed us to identify novel molecular events of three key flowering-time regulators in wild-type plants, delivering important insights for further dissecting RNA-based mechanisms regulating flowering time in Arabidopsis. [source]


    Limitation of nocturnal import of ATP into Arabidopsis chloroplasts leads to photooxidative damage,

    THE PLANT JOURNAL, Issue 2 2007
    Thomas Reinhold
    Summary When grown in short day conditions and at low light, leaves of Arabidopsis plants with mutations in the genes encoding two plastidial ATP/ADP transporters (so-called null mutants) spontaneously develop necrotic lesions. Under these conditions, the mutants also display light-induced accumulation of H2O2 and constitutive expression of genes for copper/zinc superoxide dismutase 2 and ascorbate peroxidase 1. In the light phase, null mutants accumulate high levels of phototoxic protoporphyrin IX but have only slightly reduced levels of Mg protoporphyrin IX. The physiological changes are associated with reduced magnesium,chelatase activity. Since the expression of genes encoding any of the three subunits of magnesium,chelatase is similar in wild type and null mutants, decreased enzyme activity is probably due to post-translational modification which might be due to limited availability of ATP in plastids during the night. Surprisingly, the formation of necrotic lesions was absent when null mutants were grown either in long days and low light intensity or in short days and high light intensity. We ascribe the lack of lesion phenotype to increased nocturnal ATP supply due to glycolytic degradation of starch which may lead to additional substrate-level phosphorylation in the stroma. Thus, nocturnal import of ATP into chloroplasts represents a crucial, previously unknown process that is required for controlled chlorophyll biosynthesis and for preventing photooxidative damage. [source]


    A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana

    THE PLANT JOURNAL, Issue 1 2007
    Bationa Shahollari
    Summary Piriformospora indica, a basidiomycete of the Sebacinaceae family, promotes the growth, development and seed production of a variety of plant species. Arabidopsis plants colonized with the fungus produce 22% more seeds than uncolonized plants. Deactivating the Arabidopsis single-copy gene DMI-1, which encodes an ion carrier required for mycorrihiza formation in legumes, does not affect the beneficial interaction between the two symbiotic partners. We used cellular and molecular responses initiated during the establishment of the interaction between P. indica and Arabidopsis roots to isolate mutants that fail to respond to the fungus. An ethylmethane sulfonate mutant (Piriformospora indica - insensitive-2; pii-2), and a corresponding insertion line, are impaired in a leucine-rich repeat protein (At1g13230). The protein pii-2, which contains a putative endoplasmic reticulum retention signal, is also found in Triton X-100-insoluble plasma membrane microdomains, suggesting that it is present in the endoplasmic reticulum/plasma membrane continuum in Arabidopsis roots. The microdomains also contain an atypical receptor protein (At5g16590) containing leucine-rich repeats, the message of which is transiently upregulated in Arabidopsis roots in response to P. indica. This response is not detectable in At1g13230 mutants, and the protein is not detectable in the At1g13230 mutant microdomains. Partial deactivation of a gene for a sphingosine kinase, which is required for the biosynthesis of sphingolipid found in plasma membrane microdomains, also affects the Arabidopsis/P. indica interaction. Thus, pii-2, and presumably also At5g16590, two proteins present in plasma membrane microdomains, appear to be involved in P. indica -induced growth promotion and enhanced seed production in Arabidopsis thaliana. [source]


    Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis

    THE PLANT JOURNAL, Issue 1 2006
    Sunandini Sridha
    Summary HD2 proteins are plant-specific histone deacetylases. Little is known about the function of HD2 proteins in plants. In this paper, we report that an Arabidopsis HD2 protein, AtHD2C, is involved in abscisic acid and abiotic stress responses. Analysis of Arabidopsis plants containing the AtHD2C:, - glucuronidase fusion gene revealed that AtHD2C was constitutive expressed in plants. Furthermore, expression of AtHD2C was repressed by abscisic acid. Over-expression of 35S:AtHD2C-GFP in transgenic Arabidopsis plants conferred an abscisic acid-insensitive phenotype. In addition, 35S:AtHD2C-GFP transgenic plants displayed reduced transpiration and enhanced tolerance to salt and drought stresses when compared with wild-type plants. The expression of several abscisic acid-responsive genes was affected in the 35S:AtHD2C-GFP plants. Our study provides evidence indicating that AtHD2C can modulate abscisic acid and stress responses. [source]


    AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development

    THE PLANT JOURNAL, Issue 6 2005
    Xin-Jian He
    Summary An NAC-type transcription factor gene AtNAC2 was identified from Arabidopsis thaliana when expression patterns of the genes from a microarray analysis were examined. The AtNAC2 expression was induced by salt stress and this induction was reduced in magnitude in the transgenic Arabidopsis plants overexpressing tobacco ethylene receptor gene NTHK1. AtNAC2 is localized in the nucleus and has transcriptional activation activity. It can form a homodimer in yeast. AtNAC2 was highly expressed in roots and flowers, but less expressed in other organs examined. In addition to the salt induction, the AtNAC2 can also be induced by abscisic acid (ABA), ACC and NAA. The salt induction was enhanced in the ethylene overproducer mutant eto1-1, but suppressed in the ethylene-insensitive mutants etr1-1 and ein2-1, and in the auxin-insensitive mutant tir1-1when compared with that in wild-type plants. However, the salt induction of AtNAC2 was not significantly affected in the ABA-insensitive mutants abi2-1, abi3-1 and abi4-1. These results indicate that the salt response of AtNAC2 requires ethylene signaling and auxin signaling pathways but does not require ABI2, ABI3 and ABI4, intermediates of the ABA signaling pathway. Overexpression of AtNAC2 in transgenic Arabidopsis plants resulted in promotion of lateral root development. AtNAC2 also promoted or inhibited downstream gene expressions. These results indicate that AtNAC2 may be a transcription factor incorporating the environmental and endogenous stimuli into the process of plant lateral root development. [source]


    Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana

    THE PLANT JOURNAL, Issue 6 2005
    Yeon-Ok Kim
    Summary Glycine-rich RNA-binding proteins (GR-RBPs) have been implicated to play roles in post-transcriptional regulation of gene expression in plants under various stress conditions, but the functional roles of GR-RBPs under stress conditions remain to be verified. Here, we examine the biological roles of a GR-RBP, designated atRZ-1a, in Arabidopsis thaliana under stress conditions. atRZ-1a was expressed ubiquitously in various Arabidopsis organs including stems, roots, leaves, flowers, and siliques. The transcript level of atRZ-1a increased markedly by cold stress, whereas its expression was marginally downregulated by drought stress or abscisic acid treatment. Germination and seedling growth of the loss-of-function mutants were retarded remarkably compared with those of the wild type under cold stress. In contrast, the transgenic Arabidopsis plants that overexpress atRZ-1a displayed earlier germination and better seedling growth than the wild type under cold stress. Moreover, the atRZ-1a-overexpressing transgenic Arabidopsis plants were more freezing tolerant than the wild-type plants. Heterologous expression of atRZ-1a in Escherichia coli demonstrated that the E. coli cells expressing atRZ-1a displayed much higher growth rate than the non-transformed cells after cold shock. These results provide evidence that atRZ-1a affects seed germination and seedling growth under low temperature and plays a role in the enhancement of freezing tolerance in Arabidopsis plants. [source]