Home About us Contact | |||
Arabidopsis Leaves (arabidopsi + leaf)
Selected AbstractsGlutamate Fermentation By-product Activates Plant Defence Responses and Confers Resistance Against Pathogen InfectionJOURNAL OF PHYTOPATHOLOGY, Issue 10 2010Daisuke Igarashi Abstract In the food industry, glutamate fermentation by-product (GFB) is generated by purifying glutamate products from microbial fermentation. The potential applications of GFB for upgrading agricultural soil, for foliar fertility, and as plant plankton for shrimp have been studied. We examined the efficacy of GFB foliar application and determined that GFB treatment increased the resistance of Arabidopsis leaves to infection by bacterial pathogens. Microarray gene expression analysis of Arabidopsis leaves after treatment with GFB indicated that the expression of plant defence-related genes increased. In Corynebacterium fermentation, the active substances for induction of the defence response were extracted or solubilized after treatment with heating under acidic conditions. This extract was also effective in strawberry and grape leaves for the induction of hydrogen peroxide production. These findings suggest that foliar application of GFB that contains elicitor molecules derived from fermentation bacteria is useful for plant protection in agricultural fields. [source] Lipopolysaccharide mobility in leaf tissue of Arabidopsis thalianaMOLECULAR PLANT PATHOLOGY, Issue 6 2010DANA ZEIDLER SUMMARY Bacterial lipopolysaccharides (LPS) are triggers of defence responses in plants, and induce local as well as systemic acquired resistance. Arabidopsis thaliana plants pretreated with LPS show an increased resistance to the virulent bacterial plant pathogen Pseudomonas syringae pv. tomato DC3000. To investigate the mobilization and transport of LPS in Arabidopsis leaves, fluorescently labelled LPS (Alexa Fluor® 488 conjugate) from Salmonella minnesota was used. Leaves were pressure infiltrated with fluorescein-labelled LPS and fluorescence microscopy was used to follow the movement and localization of LPS as a function of time. The observation of leaves 1 h after supplementation with fluorescein-labelled LPS revealed a fluorescent signal in the intercellular space. Capillary zone electrophoresis was used for the detection and analysis of the labelled LPS in directly treated leaves and systemic leaves. In addition, gel electrophoresis was used to confirm LPS mobilization. The results indicated that LPS mobilization/translocation occurs through the xylem from local, treated leaves to systemic, untreated leaves. Consequently, care should be taken when ascribing the observed biochemical responses and induced resistance from LPS perception as being uniquely local or systemic, as these responses might overlap because of the mobility of LPS in the plant vascular system. [source] Optimization of pathogenicity assays to study the Arabidopsis thaliana,Xanthomonas campestris pv. campestris pathosystemMOLECULAR PLANT PATHOLOGY, Issue 3 2005DAMIEN MEYER SUMMARY The cruciferous weed Arabidopsis thaliana and the causal agent of black rot disease of Crucifers Xanthomonas campestris pv. campestris (Xcc) are both model organisms in plant pathology. Their interaction has been studied successfully in the past, but these investigations suffered from high variability. In the present study, we describe an improved Arabidopsis,Xcc pathosystem that is based on a wound inoculation procedure. We show that after wound inoculation, Xcc colonizes the vascular system of Arabidopsis leaves and causes typical black rot symptoms in a compatible interaction, while in an incompatible interaction bacterial multiplication is inhibited. The highly synchronous and reproducible symptom expression allowed the development of a disease scoring scheme that enabled us to analyse the effects of mutations in individual genes on plant resistance or on bacterial virulence in a simple and precise manner. This optimized Arabidopsis,Xcc pathosystem will be a robust tool for further genetic and post-genomic investigation of fundamental questions in plant pathology. [source] A role for PSK signaling in wounding and microbial interactions in ArabidopsisPHYSIOLOGIA PLANTARUM, Issue 4 2010Maaria Loivamäki PSK- , is a disulfated peptide that acts as a growth factor in plants. PSK- , is derived from preproproteins which are encoded by five PSK precursor genes in Arabidopsis thaliana (L.) Heynh and is perceived by leucine-rich repeat receptor kinases. Arabidopsis has two PSK receptor genes, PSKR1 and PSKR2. Although ligand and receptor are well characterized, the biological functions of PSK signaling are not well understood. Using reporter lines and receptor knockout mutants of Arabidopsis, a role for PSK signaling in biotic interactions and in wounding was analyzed. Treatment of Arabidopsis leaves with the fungal elicitor E-Fol, or the fungal pathogens Alternaria brassicicola and Sclerotinia sclerotiorum resulted in induction of PSK2 and PSKR1 as shown by promoter:GUS analysis. Wounding of hypocotyls or leaves induced PSK3:GUS, PSK5:GUS and PSKR1:GUS expression indicating that PSK precursor genes are differentially regulated in response to specific stresses. The receptor knockout lines pskr1-3 and pskr2-1 showed significantly reduced photosynthesis in response to the fungal elicitor E-Fol which indicates that fungal defence is impaired. pskr1-3 plants further showed reduced growth of crown galls after infection with Agrobacterium tumefaciens. A role for PSK signaling in Agrobacterium tumefaciens tumor growth was supported by the finding that PSK precursor genes and PSKR1 are expressed in crown galls. Overall, the results indicate that PSK signaling may play a previously undescribed role in pathogen or herbivore interactions and is crucial for Agrobacterium -induced cell proliferation in crown gall formation. [source] Effects of progressive drought stress on the expression of patatin-like lipid acyl hydrolase genes in Arabidopsis leavesPHYSIOLOGIA PLANTARUM, Issue 1 2008Ana Rita Matos Patatin-like genes have recently been cloned from several plant species and found to be involved in stress responses and development. In previous work, we have shown that a patatin-like gene encoding a galactolipid acyl hydrolase (EC 3.1.1.26) was stimulated by drought in the leaves of the tropical legume, Vigna unguiculata L. Walp. The aim of the present work was to study the expression of patatin-like genes in Arabidopsis thaliana under water deficit. Expression of six genes was studied by reverse transcriptase polymerase chain reaction in leaves of plants submitted to progressive drought stress induced by withholding water and also in different plant organs. Three genes, designated AtPAT IIA, AtPAT IVC and AtPAT IIIA, were shown to be upregulated by water deficit but with different kinetics, while the other patatin-like genes were either constitutive or not expressed in leaves. The accumulation of transcripts of AtPAT IIA in the early stages of the drought treatment was coordinated with the upregulation of lipoxygenase and allene oxide synthase genes. AtPAT IIA expression was also induced by wounding and methyl jasmonate treatments. The in vitro lipolytic activity toward monogalactosyldiacylglycerol, digalactosyldiacylglycerol, phosphatidylcholine and phosphatidylglycerol was confirmed by producing the recombinant protein ATPAT IIA in insect cells. The analysis of free fatty acid pools in drought-stressed leaves shows an increase in the relative amounts of trans-3-hexadecenoic acid at the beginning of the treatment followed by a progressive accumulation of linoleic and linolenic acids. The possible roles of AtPAT IIA in lipid signaling and membrane degradation under water deficit are discussed. [source] The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leavesPLANT CELL & ENVIRONMENT, Issue 12 2007OLIVIER KEECH ABSTRACT Senescence is an active process allowing the reallocation of valuable nutrients from the senescing organ towards storage and/or growing tissues. Using Arabidopsis thaliana leaves from both whole darkened plants (DPs) and individually darkened leaves (IDLs), we investigated the fate of mitochondria and chloroplasts during dark-induced leaf senescence. Combining in vivo visualization of fates of the two organelles by three-dimensional reconstructions of abaxial parts of leaves with functional measurements of photosynthesis and respiration, we showed that the two experimental systems displayed major differences during 6 d of dark treatment. In whole DPs, organelles were largely retained in both epidermal and mesophyll cells. However, while the photosynthetic capacity was maintained, the capacity of mitochondrial respiration decreased. In contrast, IDLs showed a rapid decline in photosynthetic capacity while maintaining a high capacity for mitochondrial respiration throughout the treatment. In addition, we noticed an unequal degradation of organelles in the different cell types of the senescing leaf. From these data, we suggest that metabolism in leaves of the whole DPs enters a ,stand-by mode' to preserve the photosynthetic machinery for as long as possible. However, in IDLs, mitochondria actively provide energy and carbon skeletons for the degradation of cell constituents, facilitating the retrieval of nutrients. Finally, the heterogeneity of the degradation processes involved during senescence is discussed with regard to the fate of mitochondria and chloroplasts in the different cell types. [source] An , -amylase (At4g25000) in Arabidopsis leaves is secreted and induced by biotic and abiotic stressPLANT CELL & ENVIRONMENT, Issue 4 2007ELIZABETH A. DOYLE ABSTRACT Leaves are reported to contain a secreted , -amylase that accumulates during senescence or after biotic or abiotic stress; however, a gene encoding this enzyme has not been described. Because a secreted amylase is isolated from plastidic starch, the function of this enzyme is difficult to predict, but circumstantial evidence suggests that it may degrade starch after cell death. The Arabidopsis thaliana genome contains three , -amylase genes, one of which, AMY1 (At4g25000), has a putative signal sequence suggesting that the protein may be secreted. Two independent T-DNA insertion mutants in AMY1 lacked an amylase band on starch zymograms, which was previously named ,A1'. Washed leaf protoplasts contained reduced A1 activity suggesting that the enzyme is secreted. Native AMY1, fused to a weakly fluorescent form of GFP, was sensitive to proteinase K infiltrated into leaf apoplastic spaces, while a cytosolic form of GFP was unaffected until cell breakage, confirming that the AMY1 protein is secreted. Amylase A1 was transcriptionally induced in senescing leaves and in leaves exposed to heat stress, treated with abscisic acid or infected with Pseudomonas syringae pv. tomato expressing avrRpm1. The A1 amylase was also extremely heat resistant and its expression was up-regulated in cpr5-2, an activated defence response mutant. [source] Citrus abscission and Arabidopsis plant decline in response to 5-chloro-3-methyl-4-nitro-1H -pyrazole are mediated by lipid signallingPLANT CELL & ENVIRONMENT, Issue 11 2005FERNANDO ALFEREZ ABSTRACT The compound 5-chloro-3-methyl-4-nitro-1H -pyrazole (CMNP) is a pyrazole-derivative that induces abscission selectively in mature citrus (Citrus sinensis) fruit when applied to the canopy and has herbicidal activity on plants when applied to roots. Despite the favourable efficacy of this compound, the mode of action remains unknown. To gain information about the mode of action of CMNP, the effect of application to mature citrus fruit and Arabidopsis thaliana roots was explored. Peel contact was essential for mature fruit abscission in citrus, whereas root drenching was essential for symptom development and plant decline in Arabidopsis. CMNP was identified as an uncoupler in isolated soybean (Glycine max) mitochondria and pea (Pisum sativum) chloroplasts and an inhibitor of alcohol dehydrogenase in citrus peel, but not an inhibitor of protoporphyrinogen IX oxidase. CMNP treatment reduced ATP content in citrus peel and Arabidopsis leaves. Phospholipase A2 (PLA2) and lipoxygenase (LOX) activities, and lipid hydroperoxide (LPO) levels increased in flavedo of citrus fruit peel and leaves of Arabidopsis plants treated with CMNP. An inhibitor of PLA2 activity, aristolochic acid (AT), reduced CMNP-induced increases in PLA2 and LOX activities and LPO levels in citrus flavedo and Arabidopsis leaves and greatly reduced abscission in citrus and delayed symptoms of plant decline in Arabidopsis. However, AT treatment failed to halt the reduction in ATP content. Reduction in ATP content preceded the increase in PLA2 and LOX activities, LPO content and the biological response. The results indicate a link between lipid signalling, abscission in citrus and herbicidal damage in Arabidopsis. [source] The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in ArabidopsisTHE PLANT JOURNAL, Issue 4 2008Hiroshi Magome Summary High-salinity stress affects plant growth and development. We have previously reported that overexpression of the salinity-responsive DWARF AND DELAYED FLOWERING 1 (DDF1) gene, encoding an AP2 transcription factor of the DREB1/CBF subfamily, causes dwarfism mainly by levels of reducing bioactive gibberellin (GA) in transgenic Arabidopsis. Here, we found that the GA 2-oxidase 7 gene (GA2ox7), which encodes a C20 -GA deactivation enzyme, is strongly upregulated in DDF1 -overexpressing transgenic plants. A loss-of-function mutation of GA2ox7 (ga2ox7-2) suppressed the dwarf phenotype of DDF1 -overexpressing plants, indicating that their GA deficiency is due to overexpression of GA2ox7. Transient overexpression of DDF1 activated the promoter of GA2ox7 in Arabidopsis leaves. A gel shift assay showed that DDF1 binds DRE-like motifs (GCCGAC and ATCGAC) in the GA2ox7 promoter. In Arabidopsis under high-salinity stress, six GA2ox genes, including GA2ox7, were upregulated. Furthermore, the ga2ox7-2 mutant was less growth retarded than wild-type Col under high-salinity stress. These results demonstrate that, under salinity stress, Arabidopsis plants actively reduce endogenous GA levels via the induction of GA 2-oxidase, with the result that growth is repressed for stress adaptation. [source] Plastid ,3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acidTHE PLANT JOURNAL, Issue 1 2008Ratnesh Chaturvedi Summary Systemic acquired resistance (SAR) is an inducible defense mechanism that is activated throughout the plant, subsequent to localized inoculation with a pathogen. The establishment of SAR requires translocation of an unknown signal from the pathogen-inoculated leaf to the distal organs, where salicylic acid-dependent defenses are activated. We demonstrate here that petiole exudates (PeXs) collected from Arabidopsis leaves inoculated with an avirulent (Avr) Pseudomonas syringae strain promote resistance when applied to Arabidopsis, tomato (Lycopersicum esculentum) and wheat (Triticum aestivum). Arabidopsis FATTY ACID DESATURASE7 (FAD7), SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 (SFD1) and SFD2 genes are required for accumulation of the SAR-inducing activity. In contrast to Avr PeX from wild-type plants, Avr PeXs from fad7, sfd1 and sfd2 mutants were unable to activate SAR when applied to wild-type plants. However, the SAR-inducing activity was reconstituted by mixing Avr PeXs collected from fad7 and sfd1 with Avr PeX from the SAR-deficient dir1 mutant. Since FAD7, SFD1 and SFD2 are involved in plastid glycerolipid biosynthesis and SAR is also compromised in the Arabidopsis monogalactosyldiacylglycerol synthase1 mutant we suggest that a plastid glycerolipid-dependent factor is required in Avr PeX along with the DIR1- encoded lipid transfer protein for long-distance signaling in SAR. FAD7 -synthesized lipids provide fatty acids for synthesis of jasmonic acid (JA). However, co-infiltration of JA and methylJA with Avr PeX from fad7 and sfd1 did not reconstitute the SAR-inducing activity. In addition, JA did not co-purify with the SAR-inducing activity confirming that JA is not the mobile signal in SAR. [source] Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of ArabidopsisTHE PLANT JOURNAL, Issue 1 2003Lukas Bürkle Summary Nucleobases and derivatives like cytokinins and caffeine are translocated in the plant vascular system. Transport studies in cultured Arabidopsis cells indicate that adenine and cytokinin are transported by a common H+ -coupled high-affinity purine transport system. Transport properties are similar to that of Arabidopsis purine transporters AtPUP1 and 2. When expressed in yeast, AtPUP1 and 2 mediate energy-dependent high-affinity adenine uptake, whereas AtPUP3 activity was not detectable. Similar to the results from cell cultures, purine permeases (PUP) mediated uptake of adenine can be inhibited by cytokinins, indicating that cytokinins are transport substrates. Direct measurements demonstrate that AtPUP1 is capable of mediating uptake of radiolabeled trans -zeatin. Cytokinin uptake is strongly inhibited by adenine and isopentenyladenine but is poorly inhibited by 6-chloropurine. A number of physiological cytokinins including trans- and cis- zeatin are also efficient competitors for AtPUP2-mediated adenine uptake, suggesting that AtPUP2 is also able to mediate cytokinin transport. Furthermore, AtPUP1 mediates transport of caffeine and ribosylated purine derivatives in yeast. Promoter,reporter gene studies point towards AtPUP1 expression in the epithem of hydathodes and the stigma surface of siliques, suggesting a role in retrieval of cytokinins from xylem sap to prevent loss during guttation. The AtPUP2 promoter drives GUS reporter gene activity in the phloem of Arabidopsis leaves, indicating a role in long-distance transport of adenine and cytokinins. Promoter activity of AtPUP3 was only found in pollen. In summary, three closely related PUPs are differentially expressed in Arabidopsis and at least two PUPs have properties similar to the adenine and cytokinin transport system identified in Arabidopsis cell cultures. [source] The S -methylmethionine cycle in angiosperms: ubiquity, antiquity and activityTHE PLANT JOURNAL, Issue 5 2001Philippe Ranocha Summary Angiosperms synthesize S- methylmethionine (SMM) from methionine (Met) and S- adenosylmethionine (AdoMet) in a unique reaction catalyzed by Met S- methyltransferase (MMT). SMM serves as methyl donor for Met synthesis from homocysteine, catalyzed by homocysteine S- methyltransferase (HMT). MMT and HMT together have been proposed to constitute a futile SMM cycle that stops the free Met pool from being depleted by an overshoot in AdoMet synthesis. Arabidopsis and maize have one MMT gene, and at least three HMT genes that belong to two anciently diverged classes and encode enzymes with distinct properties and expression patterns. SMM, and presumably its cycle, must therefore have originated before dicot and monocot lineages separated. Arabidopsis leaves, roots and developing seeds all express MMT and HMTs, and can metabolize [35S]Met to [35S]SMM and vice versa. The SMM cycle therefore operates throughout the plant. This appears to be a general feature of angiosperms, as digital gene expression profiles show that MMT and HMT are co-expressed in leaves, roots and reproductive tissues of maize and other species. An in silico model of the SMM cycle in mature Arabidopsis leaves was developed from radiotracer kinetic measurements and pool size data. This model indicates that the SMM cycle consumes half the AdoMet produced, and suggests that the cycle serves to stop accumulation of AdoMet, rather than to prevent depletion of free Met. Because plants lack the negative feedback loops that regulate AdoMet pool size in other eukaryotes, the SMM cycle may be the main mechanism whereby plants achieve short-term control of AdoMet level. [source] |