NZB/NZW Mice (nzb + mouse)

Distribution by Scientific Domains


Selected Abstracts


Lack of effect of a single injection of human C-reactive protein on murine lupus or nephrotoxic nephritis

ARTHRITIS & RHEUMATISM, Issue 1 2010
Francesco Carlucci
Objective It has been reported that a single dose of human C-reactive protein (CRP) can prevent and reverse the renal damage in murine models of spontaneous lupus, as well as the rapid-onset immune complex disease induced in the accelerated nephrotoxic nephritis (ANTN) model. This study was undertaken to attempt to replicate these observations using a highly purified and fully characterized human CRP preparation. Methods (NZB × NZW)F1 (NZB/NZW) mice were treated with a single 200-,g subcutaneous injection of CRP or control reagents either before disease onset at 4 months of age or when high-grade proteinuria was present at 7 months of age. Mice were monitored at least monthly for proteinuria and autoantibody levels. ANTN was induced by preimmunizing C57BL/6 mice with sheep IgG, followed 5 days later by injection of sheep anti-mouse glomerular basement membrane antibody and CRP or control reagents. Renal disease was assessed by regular urinalysis and histologic evaluation. Results CRP treatment of NZB/NZW mice, either early or late in the disease, had no effect on proteinuria, autoantibody titers, or survival. CRP administration did not reduce renal injury or alter disease in the ANTN model. Human serum amyloid P component, a pentraxin protein that is very closely related to CRP, similarly had no effect. Conclusion Our completely negative observations do not confirm that human CRP has reproducible antiinflammatory or immunomodulatory effects in these murine models, nor do they support the suggestion that CRP might be useful for therapy of lupus or immune complex,mediated nephritis. [source]


Amelioration of brain pathology and behavioral dysfunction in mice with lupus following treatment with a tolerogenic peptide

ARTHRITIS & RHEUMATISM, Issue 12 2009
Smadar Lapter
Objective Central nervous system (CNS) involvement in systemic lupus erythematosus (SLE) is manifested by neurologic deficits and psychiatric disorders. The aim of this study was to examine SLE-associated CNS pathology in lupus-prone (NZB × NZW)F1 (NZB/NZW) mice, and to evaluate the ameliorating effects of treatment with a tolerogenic peptide, hCDR1 (human first complementarity-determining region), on these manifestations. Methods Histopathologic analyses of brains from lupus-prone NZB/NZW mice treated with vehicle, hCDR1, or a control scrambled peptide were performed. The messenger RNA expression of SLE-associated cytokines and apoptosis-related molecules from the hippocampi was determined. Anxiety-like behavior was assessed by open-field tests and dark/light transfer tests, and memory deficit was assessed using a novel object recognition test. Results Infiltration was evident in the hippocampi of the lupus-afflicted mice, and the presence of CD3+ T cells as well as IgG and complement C3 complex deposition was observed. Furthermore, elevated levels of gliosis and loss of neuronal nuclei immunoreactivity were also observed in the hippocampi of the mice with lupus. Treatment with hCDR1 ameliorated the histopathologic changes. Treatment with hCDR1 down-regulated the high expression of interleukin-1, (IL-1,), IL-6, IL-10, interferon-,, transforming growth factor ,, and the proapoptotic molecule caspase 8 in the hippocampi of the mice with lupus, and up-regulated expression of the antiapoptotic bcl -xL gene. Diseased mice exhibited increased anxiety-like behavior and memory deficit. Treatment with hCDR1 improved these parameters, as assessed by behavior tests. Conclusion Treatment with hCDR1 ameliorated CNS pathology and improved the tested cognitive and mood-related behavior of the mice with lupus. Thus, hCDR1 is a novel candidate for the treatment of CNS lupus. [source]


Decrease in glomerulonephritis and Th1-associated autoantibody production after progesterone treatment in NZB/NZW mice

ARTHRITIS & RHEUMATISM, Issue 6 2009
Grant C. Hughes
Objective While estrogen treatment exacerbates disease in models of systemic lupus erythematosus (SLE), the effects of progesterone are unclear. This study was undertaken to assess the effects of continuous progesterone treatment on autoantibody production and spontaneous glomerulonephritis (GN) in a mouse model of SLE. Methods Female (NZB × NZW)F1 (NZB/NZW) mice were treated with vehicle, 2 mg of depot medroxyprogesterone acetate (DMPA), or 10 mg of DMPA every 6 weeks. Survival, proteinuria, and serum anti,double-stranded DNA (anti-dsDNA) levels were monitored. At 39 weeks of age, kidneys were analyzed for abnormalities and glomerular accumulation of IgG subclasses and C3. Spleen leukocyte subsets were also analyzed. Results DMPA treatment reduced mortality in a dose-dependent manner in association with reduced proteinuria and glomerular damage. High-dose DMPA treatment resulted in a reduction of total serum IgG and IgG2a anti-dsDNA antibody levels, whereas IgG1 anti-dsDNA antibody levels were modestly increased. High-dose DMPA reduced glomerular accumulation of IgG1, IgG2a, IgG3, and complement, while low-dose DMPA decreased glomerular IgG2a and IgG3 levels compared with vehicle treatment. Conclusion Our findings indicate that treatment of premorbid female NZB/NZW mice with DMPA reduces mortality and attenuates spontaneous GN, likely through multiple mechanisms, including altered ratios of protective Th2-related IgG antibodies versus nephritogenic Th1-related IgG autoantibodies. Thus, estrogen and progesterone may have disparate effects on lupus autoimmunity, lending new significance to observed hormonal imbalances in patients with SLE. These data also suggest that treatment of SLE patients with DMPA may have therapeutic benefit. [source]


An orally bioavailable spleen tyrosine kinase inhibitor delays disease progression and prolongs survival in murine lupus

ARTHRITIS & RHEUMATISM, Issue 5 2008
Frances Rena Bahjat
Objective To assess whether R788, an orally bioavailable small molecule inhibitor of spleen tyrosine kinase (Syk),dependent signaling, could modulate disease in lupus-prone (NZB × NZW)F1 (NZB/NZW) mice via inhibition of Fc receptor (FcR) and B cell receptor signaling. Methods R788 was administered to NZB/NZW mice before and after disease onset. Proteinuria, blood urea nitrogen levels, and autoantibody titers were examined periodically, and overall survival and renal pathologic features were assessed following long-term treatment (24,34 weeks). The distribution and immunophenotype of various splenic T cell and B cell subpopulations were evaluated at the time of study termination. Arthus responses in NZB/NZW mice pretreated with R788 or Fc-blocking antibody (anti-CD16/32) were also examined. Results When R788 was administered prior to or after disease onset, it delayed the onset of proteinuria and azotemia, reduced renal pathology and kidney infiltrates, and significantly prolonged survival of lupus-prone NZB/NZW mice; autoantibody titers were minimally affected throughout the study. Dose-dependent reductions in the numbers of CD4+ activated T cells expressing high levels of CD44 or CD69 were apparent in spleens from R788-treated mice. Minimal effects on the numbers of naive T cells expressing CD62 ligand and total CD8+ T cells per spleen were observed following long-term drug treatment. R788 pretreatment resulted in reduced Arthus responses in NZB/NZW mice, similar to results obtained in mice pretreated with FcR-blocking antibody. Conclusion We demonstrate that a novel Syk-selective inhibitor prevents the development of renal disease and treats established murine lupus nephritis. These data suggest that Syk inhibitors may be of therapeutic benefit in human lupus and related disorders. [source]


Long-term administration of IgG2a anti-NK1.1 monoclonal antibody ameliorates lupus-like disease in NZB/W mice in spite of an early worsening induced by an IgG2a-dependent BAFF/BLyS production

IMMUNOLOGY, Issue 2 2008
Edilberto Postól
Summary The role of natural killer (NK) T cells in the development of lupus-like disease in mice is still controversial. We treated NZB/W mice with anti-NK1.1 monoclonal antibodies (mAbs) and our results revealed that administration of either an irrelevant immunoglobulin G2a (IgG2a) mAb or an IgG2a anti-NK1.1 mAb increased the production of anti-dsDNA antibodies in young NZB/W mice. However, the continuous administration of an anti-NK1.1 mAb protected aged NZB/W mice from glomerular injury, leading to prolonged survival and stabilization of the proteinuria. Conversely, the administration of the control IgG2a mAb led to an aggravation of the lupus-like disease. Augmented titres of anti-dsDNA in NZB/W mice, upon IgG2a administration, correlated with the production of BAFF/BLyS by dendritic, B and T cells. Treatment with an anti-NK1.1 mAb reduced the levels of interleukin-16, produced by T cells, in spleen cell culture supernatants from aged NZB/W. Adoptive transfer of NK T cells from aged to young NZB/W accelerated the production of anti-dsDNA in recipient NZB/W mice, suggesting that NK T cells from aged NZB/W are endowed with a B-cell helper activity. In vitro studies, using purified NK T cells from aged NZB/W, showed that these cells provided helper B-cell activity for the production of anti-dsDNA. We concluded that NK T cells are involved in the progression of lupus-like disease in mature NZB/W mice and that immunoglobulin of the IgG2a isotype has an enhancing effect on antibody synthesis due to the induction of BAFF/BLyS, and therefore have a deleterious effect in the NZB/W mouse physiology. [source]