Home About us Contact | |||
N-terminal Signal Sequence (n-terminal + signal_sequence)
Selected AbstractsHeterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloidsFEBS JOURNAL, Issue 8 2002Irina Gerasimenko Strictosidine glucosidase (SG) is an enzyme that catalyses the second step in the biosynthesis of various classes of monoterpenoid indole alkaloids. Based on the comparison of cDNA sequences of SG from Catharanthus roseus and raucaffricine glucosidase (RG) from Rauvolfia serpentina, primers for RT-PCR were designed and the cDNA encoding SG was cloned from R. serpentina cell suspension cultures. The active enzyme was expressed in Escherichia coli and purified to homogeneity. Analysis of its deduced amino-acid sequence assigned the SG from R. serpentina to family 1 of glycosyl hydrolases. In contrast to the SG from C. roseus, the enzyme from R. serpentina is predicted to lack an uncleavable N-terminal signal sequence, which is believed to direct proteins to the endoplasmic reticulum. The temperature and pH optimum, enzyme kinetic parameters and substrate specificity of the heterologously expressed SG were studied and compared to those of the C. roseus enzyme, revealing some differences between the two glucosidases. In vitro deglucosylation of strictosidine by R. serpentina SG proceeds by the same mechanism as has been shown for the C. roseus enzyme preparation. The reaction gives rise to the end product cathenamine and involves 4,21-dehydrocorynantheine aldehyde as an intermediate. The enzymatic hydrolysis of dolichantoside (N,-methylstrictosidine) leads to several products. One of them was identified as a new compound, 3-isocorreantine A. From the data it can be concluded that the divergence of the biosynthetic pathways leading to different classes of indole alkaloids formed in R. serpentina and C. roseus cell suspension cultures occurs at a later stage than strictosidine deglucosylation. [source] Extracellular glycosylphosphatidylinositol-anchored mannoproteins and proteases of Cryptococcus neoformansFEMS YEAST RESEARCH, Issue 4 2007Richard A. Eigenheer Abstract Extracellular proteins of Cryptococcus neoformans are involved in the pathogenesis of cryptococcosis, and some are immunoreactive antigens that may potentially serve as candidates for vaccine development. To further study the extracellular proteome of the human fungal pathogen Cry. neoformans, we conducted a proteomic analysis of secreted and cell wall-bound proteins with an acapsular strain of Cry. neoformans. Proteins were identified from both intact cells and cell walls. In both cases, extracellular proteins were removed with trypsin or ,-glucanase, and then all proteins/peptides were purified by solid-phase extraction, spin dialysis, and HPLC, and identified by liquid chromatography,mass spectrometry. This study identified 29 extracellular proteins with a predicted N-terminal signal sequence and also a predicted glycosylphosphatidylinositol anchor motif in more than half. Among the novel proteins identified were five glycosylphosphatidylinositol-anchored proteins with extensive Ser/Thr-rich regions but no apparent functional domains, a glycosylphosphatidylinositol-anchored aspartic protease, and a metalloprotease with structural similarity to an elastinolytic metalloprotease of Aspergillus fumigatus. This study suggests that Cry. neoformans has the machinery required to target glycosylphosphatidylinositol-anchored proteins to the cell wall, and it confirms the extracellular proteolytic ability of Cry. neoformans. [source] The potato StLTPa7 gene displays a complex Ca2+ -associated pattern of expression during the early stage of potato,Ralstonia solanacearum interactionMOLECULAR PLANT PATHOLOGY, Issue 1 2009GANG GAO SUMMARY Although nonspecific lipid transfer proteins (nsLTPs) are widely expressed during plant defence responses to pathogens, their functions and regulation are not fully understood. In this article, we report the isolation of a cDNA for the new nsLTP, StLTPa7, from cultivated potato (Solanum tuberosum) infected with Ralstonia solanacearum. The cDNA was predicted to encode a type 1 nsLTP containing an N-terminal signal sequence and possessing the characteristic features of nsLTPs. A phylogenetic analysis showed that the encoded amino acid sequence of the nsLTP was similar to those of other previously reported plant nsLTPs, which contain a putative calmodulin-binding site consisting of approximately 12 highly conserved amino acid residues. The expression of the StLTPa7 gene was studied during the early stages of potato,R. solanacearum interaction using real-time quantitative polymerase chain reaction (qRT-PCR) and Northern analyses, and a complex calcium (Ca2+)-associated pattern of expression was observed with the following features: (i) transcripts of the StLTPa7 gene were systemically up-regulated by infection with R. solanacearum; (ii) the StLTPa7 gene was stimulated by salicylic acid, methyl jasmonate, abscisic acid and Ca2+; (iii) qRT-PCR showed that, during the early stage of R. solanacearum infection, nsLTP transcripts accumulated over a time course that paralleled that of Ca2+ accumulation, detected using environmental scanning electron microscopy and energy-dispersive X-ray (EDAX) spectrometry; and (iv) the Ca2+ channel blocker, ruthenium red, partially blocked R. solanacearum -induced StLTPa7 expression. This report represents the first use of EDAX analysis to establish a synchrony between Ca2+ accumulation and nsLTP expression in response to potato,R. solanacearum interactions. Collectively, these results suggest that StLTPa7 may be a pathogen- and Ca2+ -responsive plant defence gene. [source] Integrity of thermus thermophilus cytochrome c552 Synthesized by escherichia coli cells expressing the host-specific cytochrome c maturation genes, ccmABCDEFGH: Biochemical, spectral, and structural characterization of the recombinant proteinPROTEIN SCIENCE, Issue 11 2000James A. Fee Abstract We describe the design of Escherichia coli cells that synthesize a structurally perfect, recombinant cytochrome c from the Thermus thermophilus cytochrome c552 gene. Key features are (1) construction of a plasmid-borne, chimeric cycA gene encoding an Escherichia coli -compatible, N-terminal signal sequence (MetLysIleSerIleTyrAlaThrLeu AlaAlaLeuSerLeuAlaLeuProAlaGlyAla) followed by the amino acid sequence of mature Thermus cytochrome c552; and (2) coexpression of the chimeric cycA gene with plasmid-borne, host-specific cytochrome c maturation genes (ccmABCDEFGH). Approximately 1 mg of purified protein is obtained from 1 L of culture medium. The recombinant protein, cytochrome rsC552, and native cytochrome c552 have identical redox potentials and are equally active as electron transfer substrates toward cytochrome ba3, a Thermus heme-copper oxidase. Native and recombinant cytochromes c were compared and found to be identical using circular dichroism, optical absorption, resonance Raman, and 500 MHz 1H-NMR spectroscopies. The 1.7 Å resolution X-ray crystallographic structure of the recombinant protein was determined and is indistinguishable from that reported for the native protein (Than, ME, Hof P, Huber R, Bourenkov GP, Bartunik HD, Buse G, Soulimane T, 1997, J Mol Biol 271:629,644). This approach may be generally useful for expression of alien cytochrome c genes in E. coli. [source] Mitochondrial preprotein translocases as dynamic molecular machinesFEMS YEAST RESEARCH, Issue 6 2006Martin Van Der Laan Abstract Proteomic studies have demonstrated that yeast mitochondria contain roughly 1000 different proteins. Only eight of these proteins are encoded by the mitochondrial genome and are synthesized on mitochondrial ribosomes. The remaining 99% of mitochondrial precursors are encoded within the nuclear genome and after their synthesis on cytosolic ribosomes must be imported into the organelle. Targeting of these proteins to mitochondria and their import into one of the four mitochondrial subcompartments , outer membrane, intermembrane space (IMS), inner membrane and matrix , requires various membrane-embedded protein translocases, as well as numerous chaperones and cochaperones in the aqueous compartments. During the last years, several novel protein components involved in the import and assembly of mitochondrial proteins have been identified. The picture that emerges from these exciting new findings is that of highly dynamic import machineries, rather than of regulated, but static protein complexes. In this review, we will give an overview on the recent progress in our understanding of mitochondrial protein import. We will focus on the presequence translocase of the inner mitochondrial membrane, the TIM23 complex and the presequence translocase-associated motor, the PAM complex. These two molecular machineries mediate the multistep import of preproteins with cleavable N-terminal signal sequences into the matrix or inner membrane of mitochondria. [source] |