N-terminal Cysteine Residues (n-terminal + cysteine_residue)

Distribution by Scientific Domains


Selected Abstracts


In Vivo Imaging of a Bacterial Cell Division Protein Using a Protease-Assisted Small-Molecule Labeling Approach

CHEMBIOCHEM, Issue 5 2008
Souvik Chattopadhaya
Announce on entry: We present a method for the site-specific labeling of target proteins using a set of cell permeable small-molecule probes. The tobacco etch virus (TEV) NIa protease, was used to generate target proteins with an N-terminal cysteine residue, which was subsequently labeled with thioester probe(s) in a site-specific and covalent manner. Furthermore, we demonstrate the utility of this approach for the study of FtsZ, an important bacterial cell-division protein (see figure). [source]


Distinct expression of C1q-like family mRNAs in mouse brain and biochemical characterization of their encoded proteins

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2010
Takatoshi Iijima
Abstract Many members of the C1q family, including complement C1q and adiponectin, and the structurally related tumor necrosis factor family are secreted and play crucial roles in intercellular signaling. Among them, the Cbln (precerebellin) and C1q-like (C1ql) subfamilies are highly and predominantly expressed in the central nervous system. Although the Cbln subfamily serve as essential trans-neuronal regulators of synaptic integrity in the cerebellum, the functions of the C1ql subfamily (C1ql1,C1ql4) remain unexplored. Here, we investigated the gene expression of the C1ql subfamily in the adult and developing mouse brain by reverse transcriptase-polymerase chain reaction and high-resolution in-situ hybridization. In the adult brain, C1ql1,C1ql3 mRNAs were mainly expressed in neurons but weak expression was seen in glia-like structures in the adult brain. The C1ql1 mRNA was predominantly expressed in the inferior olive, whereas the C1ql2 and C1ql3 mRNAs were strongly coexpressed in the dentate gyrus. Although the C1ql1 and C1ql3 mRNAs were detectable as early as embryonic day 13, the C1ql2 mRNA was observed at later embryonic stages. The C1ql1 mRNA was also expressed transiently in the external granular layer of the cerebellum. Biochemical characterization in heterologous cells revealed that all of the C1ql subfamily proteins were secreted and they formed both homomeric and heteromeric complexes. They also formed hexameric and higher-order complexes via their N-terminal cysteine residues. These results suggest that, like Cbln, the C1ql subfamily has distinct spatial and temporal expression patterns and may play diverse roles by forming homomeric and heteromeric complexes in the central nervous system. [source]


Palmitoylation-dependent endosomal localization of AATYK1A and its interaction with Src

GENES TO CELLS, Issue 9 2008
Koji Tsutsumi
Apoptosis-associated tyrosine kinase 1 (AATYK1), also named LMTK1, was previously isolated as an apoptosis-related gene from 32Dcl3 myeloid precursor cells, but its precise function remains unknown. AATYK1A, an isoform without a transmembrane domain, is highly expressed in neurons. We identified palmitoylation of AATYK1A at three N-terminal cysteine residues in cortical cultured neurons and COS-7 cells and found that palmitoylation determined localization of AATYK1A to the transferrin receptor-positive recycling endosomes. Further, we identified the tyrosine kinase Src as a novel AATYK1A-interacting protein. Src and Fyn phosphorylated AATYK1A at tyrosines 25 and 46 in a palmitoylation-dependent manner. The association of AATYK1A with Src in endosomes was also found to be palmitoylation-dependent. These results indicate that palmitoylation is a critical factor not only for the subcellular localization of AATYK1A but also for its interaction with Src. [source]


Staphylococcal NreB: an O2 -sensing histidine protein kinase with an O2 -labile iron,sulphur cluster of the FNR type

MOLECULAR MICROBIOLOGY, Issue 3 2004
Annegret Kamps
Summary The nreABC (nitrogen regulation) operon encodes a new staphylococcal two-component regulatory system that controls dissimilatory nitrate/nitrite reduction in response to oxygen. Unlike other two-component sensors NreB is a cytosolic protein with four N-terminal cysteine residues. It was shown that both the NreB,cysteine cluster and Fe ions are required for function. Isolated NreB was converted to the active form by incubation with cysteine desulphurase, ferrous ions and cysteine. This activation is typical for FeS-containing proteins and was reversed by oxygen. During reconstitution an absorption band at 420 nm and a yellow-brownish colour (typical for an FNR-type iron,sulphur cluster formation) developed. After alkylation of thiol groups in NreB and in the cysteine mutant NreB(C62S) almost no iron,sulphur cluster was incorporated; both findings corroborated the importance of the cysteine residues. Comparison of the kinase activity of (i) the reconstituted (ii) the unreconstituted, and (iii) the unreconstituted and deferrated NreB,His indicated that NreB kinase activity depended on iron availability and was greatly enhanced by reconstitution. NreB is the first direct oxygen-sensing protein described in staphylococci so far. Reconstituted NreB contains 4,8 acid-labile Fe and sulphide ions per NreB which is in agreement with the presence of 1,2 iron,sulphur [4Fe-4S]2+ clusters of the FNR-type. Unlike FNR, NreB does not act directly as transcriptional activator, but transfers the phosphoryl group to the response regulator NreC. [source]