N-terminal

Distribution by Scientific Domains
Distribution within Chemistry

Terms modified by N-terminal

  • n-terminal acetylation
  • n-terminal amino acid
  • n-terminal amino acid sequence
  • n-terminal amino acid sequencing
  • n-terminal amino acids
  • n-terminal amino group
  • n-terminal cysteine residue
  • n-terminal deletion
  • n-terminal domain
  • n-terminal end
  • n-terminal extension
  • n-terminal fragment
  • n-terminal half
  • n-terminal helix
  • n-terminal kinase
  • n-terminal kinase pathway
  • n-terminal part
  • n-terminal peptide
  • n-terminal portion
  • n-terminal pro
  • n-terminal pro-b-type natriuretic peptide
  • n-terminal pro-brain natriuretic peptide
  • n-terminal prohormone brain natriuretic peptide
  • n-terminal propeptide
  • n-terminal protein kinase
  • n-terminal region
  • n-terminal regions
  • n-terminal residue
  • n-terminal segment
  • n-terminal sequence
  • n-terminal sequencing
  • n-terminal signal peptide
  • n-terminal signal sequence
  • n-terminal tail
  • n-terminal transit peptide
  • n-terminal truncation

  • Selected Abstracts


    Adrenomedullin and Proadrenomudullin N-Terminal 20 Peptide (PAMP) are Present in Human Colonic Epithelia and Exert an Antimicrobial Effect

    EXPERIMENTAL PHYSIOLOGY, Issue 5 2001
    K. Marutsuka
    The hypotensive and vasorelaxing peptides adrenomedullin (AM) and its gene-related peptide, proadrenomedullin N-terminal 20 peptide (PAMP), were found to be distributed on the surface of the colonic mucosa. AM and PAMP showed dose-dependent antimicrobial activity against E. coli. The results suggest that the novel vasoactive peptides AM and PAMP play an important role in mucosal defence. [source]


    A FERM domain in a class XIV myosin interacts with actin and tubulin and localizes to the cytoskeleton, phagosomes, and nucleus in Tetrahymena thermophila,

    CYTOSKELETON, Issue 2 2010
    Michael Gotesman
    Abstract Previous studies have shown that Myo1(myosin class XIV) localizes to the cytoskeleton and is involved in amitosis of the macronucleus and trafficking of phagosomes. Myo1 contains a FERM domain that could be a site for interaction between Myo1 and the cytoskeleton. Here, we explore the function of FERM by investigating its cytoskeleton binding partners and involvement in localization of Myo1. Alignment of Myo1 FERM with a talin actin-binding sequence, a MAP-2 tubulin-binding sequence, the radixin FERM dimerization motif, and the SV40 nuclear localization sequence (NLS) revealed putative actin- and tubulin-binding sequences, a putative FERM dimerization motif, and NLS-like sequences in both the N-terminal and C-terminal regions of Myo1 FERM. Alignment of Myo1 with an ERM C-terminal motif revealed a similar sequence in the Myo1 motor domain. GFP-FERM and two truncated FERM domains were separately expressed in Tetrahymena. GFP-FERM contained the entire Myo1 FERM. Truncated Myo1 FERM domains contained either the N-terminal or the C-terminal region of FERM and one putative sequence for actin-binding, one for tubulin-binding, a putative dimerization motif, and a NLS-like sequence. Actin antibody coprecipitated GFP-fusion polypeptides and tubulin from lysate of cells expressing GFP-fusions. Cosedimentation assays performed with either whole cell extracts or anti-actin immunoprecipitation pellets revealed that F-actin (independent of ATP) and microtubules cosedimented with GFP-fusion polypeptides. GFP-FERM localized to the cytoskeleton, phagosomes, and nucleus. Truncated GFP-FERM domains localized to phagosomes but not to the cytoskeleton or nucleus. © 2009 Wiley-Liss, Inc. [source]


    Actin filament binding by a monomeric IQGAP1 fragment with a single calponin homology domain

    CYTOSKELETON, Issue 4 2004
    Scott C. Mateer
    Abstract IQGAP1 is a homodimeric protein that reversibly associates with F-actin, calmodulin, activated Cdc42 and Rac1, CLIP-170, ,-catenin, and E-cadherin. Its F-actin binding site includes a calponin homology domain (CHD) located near the N-terminal of each subunit. Prior studies have implied that medium- to high-affinity F-actin binding (5,50 ,M Kd) requires multiple CHDs located either on an individual polypeptide or on distinct subunits of a multimeric protein. For IQGAP1, a series of six tandem IQGAP coiled-coil repeats (IRs) located past the C-terminal of the CHD of each subunit support protein dimerization and, by extension, the IRs or an undefined subset of them were thought to be essential for F-actin binding mediated by its CHDs. Here we describe efforts to determine the minimal region of IQGAP1 capable of binding F-actin. Several truncation mutants of IQGAP1, which contain progressive deletions of the IRs and CHD, were assayed for F-actin binding in vitro. Fragments that contain both the CHD and at least one IR could bind F-actin and, as expected, removal of all six IRs and the CHD abolished binding. Unexpectedly, a fragment called IQGAP12-210, which contains the CHD, but lacks IRs, could bind actin filaments. IQGAP12-210 was found to be monomeric, to bind F-actin with a Kd of ,47 ,M, to saturate F-actin at a molar ratio of one IQGAP12-210 per actin monomer, and to co-localize with cortical actin filaments when expressed by transfection in cultured cells. These collective results identify the first known example of high-affinity actin filament binding mediated by a single CHD. Cell Motil. Cytoskeleton 58:231,241, 2004. © 2004 Wiley-Liss, Inc. [source]


    Two different unique cardiac isoforms of protein 4.1R in zebrafish, Danio rerio, and insights into their cardiac functions as related to their unique structures

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2010
    Kenji Murata
    Protein 4.1R (4.1R) has been identified as the major component of the human erythrocyte membrane skeleton. The members of the protein 4.1 gene family are expressed in a tissue-specific alternative splicing manner that increases their functions in each tissue; however, the exact roles of cardiac 4.1R in the developing myocardium are poorly understood. In zebrafish (ZF), we identified two heart-specific 4.1R isoforms, ZF4.1RH2 and ZF4.1RH3, encoding N-terminal 30 kDa (FERM) domain and spectrin-actin binding domain (SABD) and C-terminal domain (CTD), separately. Applying immunohistochemistry using specific antibodies for 30 kDa domain and CTD separately, the gene product of ZF4.1RH2 and ZF4.1RH3 appeared only in the ventricle and in the atrium, respectively, in mature hearts. During embryogenesis, both gene expressions are expressed starting 24 h post-fertilization (hpf). Following whole-mount in situ hybridization, ZF4.1RH3 gene expression was detected in the atrium of 37 hpf embryos. These results indicate that the gene product of ZF4.1RH3 is essential for normal morphological shape of the developing heart and to support the repetitive cycles of its muscle contraction and relaxation. [source]


    Drosophila multiplexin (Dmp) modulates motor axon pathfinding accuracy

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2009
    Frauke Meyer
    Multiplexins are multidomain collagens typically composed of an N-terminal thrombospondin-related domain, an interrupted triple helix and a C-terminal endostatin domain. They feature a clear regulatory function in the development of different tissues, which is chiefly conveyed by the endostatin domain. This domain can be found in proteolytically released monomeric and trimeric versions, and their diverse and opposed effects on the migratory behavior of epithelial and endothelial cell types have been demonstrated in cell culture experiments. The only Drosophila multiplexin displays specific features of both vertebrate multiplexins, collagens XV and XVIII. We characterized the Drosophila multiplexin (dmp) gene and found that three main isoforms are expressed from it, one of which is the monomeric endostatin version. Generation of dmp deletion alleles revealed that Dmp plays a role in motor axon pathfinding, as the mutants exhibit ventral bypass defects of the intersegmental nerve b (ISNb) similar to other motor axon guidance mutants. Transgenic overexpression of monomeric endostatin as well as of full-length Dmp, but not trimeric endostatin, were able to rescue these defects. In contrast, trimeric endostatin increased axon pathfinding accuracy in wild type background. We conclude that Dmp plays a modulating role in motor axon pathfinding and may be part of a buffering system that functions to avoid innervation errors. [source]


    Biological activity of RE-1 silencing transcription factor (REST) towards distinct transcriptional activators

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2001
    Michael Lietz
    Abstract The zinc finger protein RE-1 silencing transcription factor (REST) is a transcriptional repressor that represses neuronal genes in non-neuronal tissues. We have analyzed the ability of REST and the REST mutants, REST,N and REST,C lacking either the N-terminal or C-terminal repression domains of REST, to inhibit transcription mediated by distinct transcriptional activator proteins. For this purpose we have designed an activator specific assay where transcription is activated as a result of only one distinct activation domain. In addition, binding sites for REST were inserted in the 5,-untranslated region or at a distant position downstream of the polyadenylation signal. The results show that REST or the REST mutants containing only one repression domain were able to block transcriptional activation mediated by the transcriptional activation domains derived from p53, AP2, Egr-1, and GAL4. Moreover, REST, as well as the REST mutants, blocked the activity of the phosphorylation-dependent activation domain of Elk1. However, the activity of the activation domain derived from cAMP response element binding protein 2 (CREB2), was not inhibited by REST, REST,N or REST,C, suggesting that REST is able to distinguish between distinct transcriptional activation domains. Additionally, the activator specific assay, together with a positive-dominant mutant of REST that activated instead of repressed transcription, was used in titration experiments to show that REST has transcriptional repression and no transcriptional activation properties when bound to the 5,-untranslated region of a gene. [source]


    Adrenomedullin and Proadrenomudullin N-Terminal 20 Peptide (PAMP) are Present in Human Colonic Epithelia and Exert an Antimicrobial Effect

    EXPERIMENTAL PHYSIOLOGY, Issue 5 2001
    K. Marutsuka
    The hypotensive and vasorelaxing peptides adrenomedullin (AM) and its gene-related peptide, proadrenomedullin N-terminal 20 peptide (PAMP), were found to be distributed on the surface of the colonic mucosa. AM and PAMP showed dose-dependent antimicrobial activity against E. coli. The results suggest that the novel vasoactive peptides AM and PAMP play an important role in mucosal defence. [source]


    Definition of the residues required for the interaction between glycine-extended gastrin and transferrin in vitro

    FEBS JOURNAL, Issue 17 2009
    Suzana Kovac
    Transferrin is the main iron transport protein found in the circulation, and the level of transferrin saturation in the blood is an important indicator of iron status. The peptides amidated gastrin(17) (Gamide) and glycine-extended gastrin(17) (Ggly) are well known for their roles in controlling acid secretion and as growth factors in the gastrointestinal tract. Several lines of evidence, including the facts that transferrin binds gastrin, that gastrins bind ferric ions, and that the level of expression of gastrins positively correlates with transferrin saturation, suggest the possible involvement of the transferrin,gastrin interaction in iron homeostasis. In the present work, the interaction between gastrins and transferrin has been characterized by surface plasmon resonance and covalent crosslinking. First, an interaction between iron-free apo-transferrin and Gamide or Ggly was observed. The fact that no interaction was observed in the presence of the chelator EDTA suggested that the gastrin,ferric ion complex was the interacting species. Moreover, removal of ferric ions with EDTA reduced the stability of the complex between apo-transferrin and gastrins, and no interaction was observed between Gamide or Ggly and diferric transferrin. Second, some or all of glutamates at positions 8,10 of the Ggly molecule, together with the C-terminal domain, were necessary for the interaction with apo-transferrin. Third, monoferric transferrin mutants incapable of binding iron in either the N-terminal or C-terminal lobe still bound Ggly. These findings are consistent with the hypothesis that gastrin peptides bind to nonligand residues within the open cleft in each lobe of transferrin and are involved in iron loading of transferrin in vivo. Structured digital abstract ,,MINT-7212832, MINT-7212849: Apo-transferrin (uniprotkb:P02787) and Gamide (uniprotkb:P01350) bind (MI:0407) by surface plasmon resonance (MI:0107) ,,MINT-7212881, MINT-7212909: Ggly (uniprotkb:P01350) and Apo-transferrin (uniprotkb:P02787) bind (MI:0407) by cross-linking studies (MI:0030) ,,MINT-7212864: Apo-transferrin (uniprotkb:P02787) and Ggly (uniprotkb:P01350) bind (MI:0407) by competition binding (MI:0405) [source]


    Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species

    FEBS JOURNAL, Issue 13 2008
    Hideki Sumimoto
    NADPH oxidases of the Nox family exist in various supergroups of eukaryotes but not in prokaryotes, and play crucial roles in a variety of biological processes, such as host defense, signal transduction, and hormone synthesis. In conjunction with NADPH oxidation, Nox enzymes reduce molecular oxygen to superoxide as a primary product, and this is further converted to various reactive oxygen species. The electron-transferring system in Nox is composed of the C-terminal cytoplasmic region homologous to the prokaryotic (and organelle) enzyme ferredoxin reductase and the N-terminal six transmembrane segments containing two hemes, a structure similar to that of cytochrome b of the mitochondrial bc1 complex. During the course of eukaryote evolution, Nox enzymes have developed regulatory mechanisms, depending on their functions, by inserting a regulatory domain (or motif) into their own sequences or by obtaining a tightly associated protein as a regulatory subunit. For example, one to four Ca2+ -binding EF-hand motifs are present at the N-termini in several subfamilies, such as the respiratory burst oxidase homolog (Rboh) subfamily in land plants (the supergroup Plantae), the NoxC subfamily in social amoebae (the Amoebozoa), and the Nox5 and dual oxidase (Duox) subfamilies in animals (the Opisthokonta), whereas an SH3 domain is inserted into the ferredoxin,NADP+ reductase region of two Nox enzymes in Naegleria gruberi, a unicellular organism that belongs to the supergroup Excavata. Members of the Nox1,4 subfamily in animals form a stable heterodimer with the membrane protein p22phox, which functions as a docking site for the SH3 domain-containing regulatory proteins p47phox, p67phox, and p40phox; the small GTPase Rac binds to p67phox (or its homologous protein), which serves as a switch for Nox activation. Similarly, Rac activates the fungal NoxA via binding to the p67phox -like protein Nox regulator (NoxR). In plants, on the other hand, this GTPase directly interacts with the N-terminus of Rboh, leading to superoxide production. Here I describe the regulation of Nox-family oxidases on the basis of three-dimensional structures and evolutionary conservation. [source]


    Structural modeling and mutational analysis of yeast eukaryotic translation initiation factor 5A reveal new critical residues and reinforce its involvement in protein synthesis

    FEBS JOURNAL, Issue 8 2008
    Camila A. O. Dias
    Eukaryotic translation initiation factor 5A (eIF5A) is a protein that is highly conserved and essential for cell viability. This factor is the only protein known to contain the unique and essential amino acid residue hypusine. This work focused on the structural and functional characterization of Saccharomyces cerevisiae eIF5A. The tertiary structure of yeast eIF5A was modeled based on the structure of its Leishmania mexicana homologue and this model was used to predict the structural localization of new site-directed and randomly generated mutations. Most of the 40 new mutants exhibited phenotypes that resulted from eIF-5A protein-folding defects. Our data provided evidence that the C-terminal ,-helix present in yeast eIF5A is an essential structural element, whereas the eIF5A N-terminal 10 amino acid extension not present in archaeal eIF5A homologs, is not. Moreover, the mutants containing substitutions at or in the vicinity of the hypusine modification site displayed nonviable or temperature-sensitive phenotypes and were defective in hypusine modification. Interestingly, two of the temperature-sensitive strains produced stable mutant eIF5A proteins , eIF5AK56A and eIF5AQ22H,L93F, and showed defects in protein synthesis at the restrictive temperature. Our data revealed important structural features of eIF5A that are required for its vital role in cell viability and underscored an essential function of eIF5A in the translation step of gene expression. [source]


    Crystal structures of CbiL, a methyltransferase involved in anaerobic vitamin B12 biosynthesis, and CbiL in complex with S -adenosylhomocysteine , implications for the reaction mechanism

    FEBS JOURNAL, Issue 2 2007
    Kei Wada
    During anaerobic cobalamin (vitamin B12) biosynthesis, CbiL catalyzes methylation at the C-20 position of a cyclic tetrapyrrole ring using S -adenosylmethionine as a methyl group source. This methylation is a key modification for the ring contraction process, by which a porphyrin-type tetrapyrrole ring is converted to a corrin ring through elimination of the modified C-20 and direct bonding of C-1 to C-19. We have determined the crystal structures of Chlorobium tepidum CbiL and CbiL in complex with S -adenosylhomocysteine (the S -demethyl form of S -adenosylmethionine). CbiL forms a dimer in the crystal, and each subunit consists of N-terminal and C-terminal domains. S -Adenosylhomocysteine binds to a cleft between the two domains, where it is specifically recognized by extensive hydrogen bonding and van der Waals interactions. The orientation of the cobalt-factor II substrate was modeled by simulation, and the predicted model suggests that the hydroxy group of Tyr226 is located in close proximity to the C-20 atom as well as the C-1 and C-19 atoms of the tetrapyrrole ring. These configurations allow us to propose a catalytic mechanism: the conserved Tyr226 residue in CbiL catalyzes the direct transfer of a methyl group from S -adenosylmethionine to the substrate through an SN2-like mechanism. Furthermore, the structural model of CbiL binding to its substrate suggests the axial residue coordinated to the central cobalt of cobalt-factor II. [source]


    Isolation, characterization, sequencing and crystal structure of charybdin, a type 1 ribosome-inactivating protein from Charybdis maritima agg.

    FEBS JOURNAL, Issue 12 2006
    Eleftherios Touloupakis
    A novel, type 1 ribosome-inactivating protein designated charybdin was isolated from bulbs of Charybdis maritima agg. The protein, consisting of a single polypeptide chain with a molecular mass of 29 kDa, inhibited translation in rabbit reticulocytes with an IC50 of 27.2 nm. Plant genomic DNA extracted from the bulb was amplified by PCR between primers based on the N-terminal and C-terminal sequence of the protein from dissolved crystals. The complete mature protein sequence was derived by partial DNA sequencing and terminal protein sequencing, and was confirmed by high-resolution crystal structure analysis. The protein contains Val at position 79 instead of the conserved Tyr residue of the ribosome-inactivating proteins known to date. To our knowledge, this is the first observation of a natural substitution of a catalytic residue at the active site of a natural ribosome-inactivating protein. This substitution in the active site may be responsible for the relatively low in vitro translation inhibitory effect compared with other ribosome-inactivating proteins. Single crystals were grown in the cold room from PEG6000 solutions. Diffraction data collected to 1.6 Å resolution were used to determine the protein structure by the molecular replacement method. The fold of the protein comprises two structural domains: an ,,+ , N-terminal domain (residues 4,190) and a mainly ,-helical C-terminal domain (residues 191,257). The active site is located in the interface between the two domains and comprises residues Val79, Tyr117, Glu167 and Arg170. [source]


    The most C-terminal tri-glycine segment within the polyglycine stretch of the pea Toc75 transit peptide plays a critical role for targeting the protein to the chloroplast outer envelope membrane

    FEBS JOURNAL, Issue 7 2006
    Amy J. Baldwin
    The protein translocation channel at the outer envelope membrane of chloroplasts (Toc75) is synthesized as a larger precursor with an N-terminal transit peptide. Within the transit peptide of the pea Toc75, a major portion of the 10 amino acid long stretch that contains nine glycine residues was shown to be necessary for directing the protein to the chloroplast outer membrane in vitro[Inoue K & Keegstra K (2003) Plant J34, 661,669]. In order to get insights into the mechanism by which the polyglycine stretch mediates correct targeting, we divided it into three tri-glycine segments and examined the importance of each domain in targeting specificity in vitro. Replacement of the most C-terminal segment with alanine residues resulted in mistargeting the protein to the stroma, while exchange of either of the other two tri-glycine regions had no effect on correct targeting. Furthermore, simultaneous replacement of the N-terminal and middle tri-glycine segments with alanine repeats did not cause mistargeting of the protein as much as those of the N- and C-terminal, or the middle and C-terminal segments. These results indicate that the most C-terminal tri-glycine segment is important for correct targeting. Exchanging this portion with a repeat of leucine or glutamic acid also caused missorting of Toc75 to the stroma. By contrast, its replacement with repeats of asparagine, aspartic acid, serine, and proline did not largely affect correct targeting. These data suggest that relatively compact and nonhydrophobic side chains in this particular region play a crucial role in correct sorting of Toc75. [source]


    The Alzheimer ,-peptide shows temperature-dependent transitions between left-handed 31 -helix, ,-strand and random coil secondary structures

    FEBS JOURNAL, Issue 15 2005
    Jens Danielsson
    The temperature-induced structural transitions of the full length Alzheimer amyloid ,-peptide [A,(1,40) peptide] and fragments of it were studied using CD and 1H NMR spectroscopy. The full length peptide undergoes an overall transition from a state with a prominent population of left-handed 31 (polyproline II; PII)-helix at 0 °C to a random coil state at 60 °C, with an average ,H of 6.8 ± 1.4 kJ·mol,1 per residue, obtained by fitting a Zimm,Bragg model to the CD data. The transition is noncooperative for the shortest N-terminal fragment A,(1,9) and weakly cooperative for A,(1,40) and the longer fragments. By analysing the temperature-dependent 3JHNH, couplings and hydrodynamic radii obtained by NMR for A,(1,9) and A,(12,28), we found that the structure transition includes more than two states. The N-terminal hydrophilic A,(1,9) populates PII-like conformations at 0 °C, then when the temperature increases, conformations with dihedral angles moving towards ,-strand at 20 °C, and approaches random coil at 60 °C. The residues in the central hydrophobic (18,28) segment show varying behaviour, but there is a significant contribution of ,-strand-like conformations at all temperatures below 20 °C. The C-terminal (29,40) segment was not studied by NMR, but from CD difference spectra we concluded that it is mainly in a random coil conformation at all studied temperatures. These results on structural preferences and transitions of the segments in the monomeric form of A, may be related to the processes leading to the aggregation and formation of fibrils in the Alzheimer plaques. [source]


    Autophosphorylation of Archaeoglobus fulgidus Rio2 and crystal structures of its nucleotide,metal ion complexes

    FEBS JOURNAL, Issue 11 2005
    Nicole LaRonde-LeBlanc
    The highly conserved, atypical RIO serine protein kinases are found in all organisms, from archaea to man. In yeast, the kinase activity of Rio2 is necessary for the final processing step of maturing the 18S ribosomal rRNA. We have previously shown that the Rio2 protein from Archaeoglobus fulgidus contains both a small kinase domain and an N-terminal winged helix domain. Previously solved structures using crystals soaked in nucleotides and Mg2+ or Mn2+ showed bound nucleotide but no ordered metal ions, leading us to the conclusion that they did not represent an active conformation of the enzyme. To determine the functional form of Rio2, we crystallized it after incubation with ATP or ADP and Mn2+. Co-crystal structures of Rio2,ATP,Mn and Rio2,ADP,Mn were solved at 1.84 and 1.75 Å resolution, respectively. The ,-phosphate of ATP is firmly positioned in a manner clearly distinct from its location in canonical serine kinases. Comparison of the Rio2,ATP,Mn complex with the Rio2 structure with no added nucleotides and with the ADP complex indicates that a flexible portion of the Rio2 molecule becomes ordered through direct interaction between His126 and the ,-phosphate oxygen of ATP. Phosphopeptide mapping of the autophosphorylation site of Rio2 identified Ser128, within the flexible loop and directly adjacent to the part that becomes ordered in response to ATP, as the target. These results give us further information about the nature of the active site of Rio2 kinase and suggest a mechanism of regulation of its enzymatic activity. [source]


    Insights into the reaction mechanism of glycosyl hydrolase family 49

    FEBS JOURNAL, Issue 22 2004
    Site-directed mutagenesis, substrate preference of isopullulanase
    Aspergillus niger isopullulanase (IPU) is the only pullulan-hydrolase in glycosyl hydrolase (GH) family 49 and does not hydrolyse dextran at all, while all other GH family 49 enzymes are dextran-hydrolysing enzymes. To investigate the common catalytic mechanism of GH family 49 enzymes, nine mutants were prepared to replace residues conserved among GH family 49 (four Trp, three Asp and two Glu). Homology modelling of IPU was also carried out based on the structure of Penicillium minioluteum dextranase, and the result showed that Asp353, Glu356, Asp372, Asp373 and Trp402, whose substitutions resulted in the reduction of activity for both pullulan and panose, were predicted to be located in the negatively numbered subsites. Three Asp-mutated enzymes, D353N, D372N and D373N, lost their activities, indicating that these residues are candidates for the catalytic residues of IPU. The W402F enzyme significantly reduced IPU activity, and the Km value was sixfold higher and the k0 value was 500-fold lower than those for the wild-type enzyme, suggesting that Trp402 is a residue participating in subsite ,1. Trp31 and Glu273, whose substitutions caused a decrease in the activity for pullulan but not for panose, were predicted to be located in the interface between N-terminal and ,-helical domains. The substrate preference of the negatively numbered subsites of IPU resembles that of GH family 49 dextranases. These findings suggest that IPU and the GH family 49 dextranases have a similar catalytic mechanism in their negatively numbered subsites in spite of the difference of their substrate specificities. [source]


    Membrane orientation of laminin binding protein

    FEBS JOURNAL, Issue 18 2003
    An extracellular matrix bridging molecule of Leishmania donovani
    Earlier we presented several lines of evidence that a 67-kDa laminin binding protein (LBP) in Leishmania donovani, that is different from the putative mammalian 67-kDa laminin receptor, may play an important role in the onset of leishmaniasis, as these parasites invade macrophages in various organs after migrating through the extracellular matrix. Here we describe the membrane orientation of this Leishmania laminin receptor. Flow cytometric analysis using anti-LBP Ig revealed its surface localization, which was further confirmed by enzymatic radiolabeling of Leishmania surface proteins, autoradiography and Western blotting. Efficient incorporation of LBP into artificial lipid bilayer, as well as its presence in the detergent phase after Triton X-114 membrane extraction, suggests that it may be an integral membrane protein. Limited trypsinization of intact parasite and subsequent immunoblotting of trypsin released material using laminin as primary probe revealed that a major part of this protein harbouring the laminin binding site is oriented extracellularly. Carboxypeptidase Y treatment of the whole cell, as well as the membrane preparation, revealed that a small part of the C-terminal is located in the cytosol. A 34-kDa transmembrane part of LBP could be identified using the photoactive probe, 3-(trifluoromethyl)-3-(m -iodophenyl)diazirine (TID). Partial sequence comparison of the intact protein to that with the trypsin-released fragment indicated that N-terminal may be located extracellularly. Together, these results suggest that LBP may be an integral membrane protein, having significant portion of N-terminal end as well as the laminin binding site oriented extracellularly, a membrane spanning domain and a C-terminal cytosolic end. [source]


    A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone

    FEBS JOURNAL, Issue 1 2003
    Shin-ichi Yamada
    The , isoform of human 90-kDa heat shock protein (HSP90,) is composed of three domains: the N-terminal (residues 1,400); middle (residues 401,615) and C-terminal (residues 621,732). The middle domain is simultaneously associated with the N- and C-terminal domains, and the interaction with the latter mediates the dimeric configuration of HSP90. Besides one in the N-terminal domain, an additional client-binding site exists in the C-terminal domain of HSP90. The aim of the present study is to elucidate the regions within the C-terminal domain responsible for the bindings to the middle domain and to a client protein, and to define the relationship between the two functions. A bacterial two-hybrid system revealed that residues 650,697 of HSP90, were essential for the binding to the middle domain. An almost identical region (residues 657,720) was required for the suppression of heat-induced aggregation of citrate synthase, a model client protein. Replacement of either Leu665-Leu666 or Leu671-Leu672 to Ser-Ser within the hydrophobic segment (residues 662,678) of the C-terminal domain caused the loss of bindings to both the middle domain and the client protein. The interaction between the middle and C-terminal domains was also found in human 94-kDa glucose-regulated protein. Moreover, Escherichia coli HtpG, a bacterial HSP90 homologue, formed heterodimeric complexes with HSP90, and the 94-kDa glucose-regulated protein through their middle-C-terminal domains. Taken together, it is concluded that the identical region including the hydrophobic segment of the C-terminal domain is essential for both the client binding and dimer formation of the HSP90-family molecular chaperone and that the dimeric configuration appears to be similar in the HSP90-family proteins. [source]


    Extra terminal residues have a profound effect on the folding and solubility of a Plasmodium falciparum sexual stage-specific protein over-expressed in Escherichia coli

    FEBS JOURNAL, Issue 21 2002
    Sushil Prasad Sati
    The presence of extra N- and C- terminal residues can play a major role in the stability, solubility and yield of recombinant proteins. Pfg27 is a 27K soluble protein that is essential for sexual development in Plasmodium falciparum. It was over-expressed using the pMAL-p2 vector as a fusion protein with the maltose binding protein. Six different constructs were made and each of the fusion proteins were expressed and purified. Our results show that the fusion proteins were labile and only partially soluble in five of the constructs resulting in very poor yields. Intriguingly, in the sixth construct, the yield of soluble fusion protein with an extended carboxyl terminus of 17 residues was several fold higher. Various constructs with either N-terminal or smaller C-terminal extensions failed to produce any soluble fusion protein. Furthermore, all five constructs produced Pfg27 that precipitated after protease cleavage from its fusion partner. The sixth construct, which produced soluble protein in high yields, also gave highly stable and soluble Pfg27 after cleavage of the fusion. These results indicate that extra amino acid residues at the termini of over-expressed proteins can have a significant effect on the folding of proteins expressed in E. coli. Our data suggest the potential for development of a novel methodology, which will entail construction of fusion proteins with maltose binding protein as a chaperone on the N-terminus and a C-terminal ,solubilization tag'. This system may allow large-scale production of those proteins that have a tendency to misfold during expression. [source]


    Complete primary structure of rainbow trout type I collagen consisting of ,1(I),2(I),3(I) heterotrimers

    FEBS JOURNAL, Issue 10 2001
    Masataka Saito
    The subunit compositions of skin and muscle type I collagens from rainbow trout were found to be ,1(I),2(I),3(I) and [,1(I)]2,2(I), respectively. The occurrence of ,3(I) has been observed only for bonyfish. The skin collagen exhibited more susceptibility to both heat denaturation and MMP-13 digestion than the muscle counterpart; the former had a lower denaturation temperature by about 0.5 °C than the latter. The lower stability of skin collagen, however, is not due to the low levels of imino acids because the contents of Pro and Hyp were almost constant in both collagens. On the other hand, some cDNAs coding for the N-terminal and/or a part of triple-helical domains of pro,(I) chains were cloned from the cDNA library of rainbow trout fibroblasts. These cDNAs together with the previously cloned collagen cDNAs gave information about the complete primary structure of type I procollagen. The main triple-helical domain of each pro,(I) chain had 338 uninterrupted Gly-X-Y triplets consisting of 1014 amino acids and was unique in its high content of Gly-Gly doublets. In particular, the bonyfish-specific ,(I) chain, pro,3(I) was characterized by the small number of Gly-Pro-Pro triplets, 19, and the large number of Gly-Gly doublets, 38, in the triple-helical domain, compared to 23 and 22, respectively, for pro,1(I). The small number of Gly-Pro-Pro and the large number of Gly-Gly in pro,3(I) was assumed to partially loosen the triple-helical structure of skin collagen, leading to the lower stability of skin collagen mentioned above. Finally, phylogenetic analyses revealed that pro,3(I) had diverged from pro,1(I). This study is the first report of the complete primary structure of fish type I procollagen. [source]


    The polypeptide chain release factor eRF1 specifically contacts the s4UGA stop codon located in the A site of eukaryotic ribosomes

    FEBS JOURNAL, Issue 10 2001
    Laurent Chavatte
    It has been shown previously [Brown, C.M. & Tate, W.P. (1994) J. Biol. Chem.269, 33164,33170.] that the polypeptide chain release factor RF2 involved in translation termination in prokaryotes was able to photocrossreact with mini-messenger RNAs containing stop signals in which U was replaced by 4-thiouridine (s4U). Here, using the same strategy we have monitored photocrosslinking to eukaryotic ribosomal components of 14-mer mRNA in the presence of , and 42-mer mRNA in the presence of tRNAAsp (tRNAAsp gene transcript). We show that: (a) both 14-mer and 42-mer mRNAs crossreact with ribosomal RNA and ribosomal proteins. The patterns of the crosslinked ribosomal proteins are similar with both mRNAs and sensitive to ionic conditions; (b) the crosslinking patterns obtained with 42-mer mRNAs show characteristic modification upon addition of tRNAAsp providing evidence for appropriate mRNA phasing onto the ribosome. Similar changes are not detected with the 14-mer pairs; (c) when eukaryotic polypeptide chain release factor 1 (eRF1) is added to the ribosome·tRNAAsp complex it crossreacts with the 42-mer mRNA containing the s4UGA stop codon located in the A site, but not with the s4UCA sense codon; this crosslink involves the N-terminal and middle domains of eRF1 but not the C domain which interacts with eukaryotic polypeptide chain release factor 3 (eRF3); (d) addition of eRF3 has no effect on the yield of eRF1,42-mer mRNA crosslinking and eRF3 does not crossreact with 42-mer mRNA. These experiments delineate the in vitro conditions allowing optimal phasing of mRNA on the eukaryotic ribosome and demonstrate a direct and specific contact of ,core' eRF1 and s4UGA stop codon within the ribosomal A site. [source]


    Homo-oligomer formation by basigin, an immunoglobulin superfamily member, via its N-terminal immunoglobulin domain

    FEBS JOURNAL, Issue 14 2000
    Seiya Yoshida
    Basigin (Bsg) is a highly glycosylated transmembrane protein with two immunoglobulin (Ig)-like domains. A number of studies, including gene targeting, have demonstrated that Bsg plays pivotal roles in spermatogenesis, implantation, neural network formation and tumor progression. In the present study, to understand the mechanism of action of Bsg, we determined its expression status on the plasma membrane. Cotransfection of Bsg expression vectors with two different tags clarified that Bsg forms homo-oligomers in a cis -dependent manner on the plasma membrane. If the disulfide bond of the more N-terminally located Ig-like domain was destroyed by mutations, Bsg could not form oligomers. In contrast, the mutations of the C-terminal Ig-like domain or N-glycosylation sites did not affect the association. The association of mouse and human Bsgs, which exhibit high homology in the transmembrane and intracellular domains but low homology in the extracellular domain, was very weak as compared with that within the same species, suggesting the importance of the extracellular domain in the association. If the extracellular domain of the human Ret protein was replaced with the N-terminal Ig-like domain of Bsg, the resulting chimera protein was associated with intact wild-type Bsg, but not if the C-terminal Ig-like domain, instead of the N-terminal one, of Bsg was used. No oligomer formation took place between the intact wild-type Ret and Bsg proteins. In conclusion, these data indicate that the N-terminal Ig-like domain is necessary and sufficient for oligomer formation by Bsg on the plasma membrane. [source]


    Large-scale expression and thermodynamic characterization of a glutamate receptor agonist-binding domain

    FEBS JOURNAL, Issue 13 2000
    Dean R. Madden
    The ionotropic glutamate receptors (GluR) are the primary mediators of excitatory synaptic transmission in the brain. GluR agonist binding has been localized to an extracellular domain whose core is homologous to the bacterial periplasmic binding proteins (PBP). We have established routine, baculovirus-mediated expression of a complete ligand-binding domain construct at the 10-L scale, yielding 10,40 milligrams of purified protein. This construct contains peptides that lie outside the PBP-homologous core and that connect the domain core to the transmembrane domains of the channel and to the N-terminal ,X'-domain. These linker peptides have been implicated in modulating channel physiology. Such extended constructs have proven difficult to express in bacteria, but the protein described here is stable and monomeric. Isothermal titration calorimetry reveals that glutamate binding to the domain involves a substantial heat capacity change and that at physiological temperatures, the reaction is both entropically and enthalpically favorable. [source]


    The central domain of bovine submaxillary mucin consists of over 50 tandem repeats of 329 amino acids

    FEBS JOURNAL, Issue 8 2000
    Chromosomal localization of the BSM1 gene, porcine counterparts, relations to ovine
    We previously elucidated five distinct protein domains (I,V) for bovine submaxillary mucin, which is encoded by two genes, BSM1 and BSM2. Using Southern blot analysis, genomic cloning and sequencing of the BSM1 gene, we now show that the central domain (V) consists of ,,55 tandem repeats of 329 amino acids and that domains III,V are encoded by a 58.4-kb exon, the largest exon known for all genes to date. The BSM1 gene was mapped by fluorescence in situ hybridization to the proximal half of chromosome 5 at bands q2.2,q2.3. The amino-acid sequence of six tandem repeats (two full and four partial) were found to have only 92,94% identities. We propose that the variability in the amino-acid sequences of the mucin tandem repeat is important for generating the combinatorial library of saccharides that are necessary for the protective function of mucins. The deduced peptide sequences of the central domain match those determined from the purified bovine submaxillary mucin and also show 68,94% identity to published peptide sequences of ovine submaxillary mucin. This indicates that the core protein of ovine submaxillary mucin is closely related to that of bovine submaxillary mucin and contains similar tandem repeats in the central domain. In contrast, the central domain of porcine submaxillary mucin is reported to consist of 81-amino-acid tandem repeats. However, both bovine submaxillary mucin and porcine submaxillary mucin contain similar N-terminal and C-terminal domains and the corresponding genes are in the conserved linkage regions of the respective genomes. [source]


    Insertion of light-harvesting chlorophyll a/b protein into the thylakoid

    FEBS JOURNAL, Issue 4 2000
    Topographical studies
    The major light-harvesting chlorophyll a/b -binding protein (Lhcb1,2) of photosystem II is inserted into the thylakoid via the signal recognition particle dependent pathway. However, the mechanism by which the protein enters the membrane is at this time unknown. In order to define some topographical restrictions for this process, we constructed several recombinant derivatives of Lhcb1 carrying hexahistidine tags at either protein terminus or in the stromal loop domain. Additionally, green fluorescent protein (GFP) was fused to either terminus. None of the modifications significantly impair the pigment-binding properties of the protein in the in vitro reconstitution of LHCII. With the exception of the C-terminal GFP fusion, all mutants stably insert into isolated thylakoids in the absence of Ni2+ ions. The addition of low concentrations of Ni2+ ions abolishes the thylakoid insertion of C-terminally His-tagged mutants whereas the other His-tagged proteins fail to insert only at higher Ni2+ concentrations. The C-terminus of Lhcb1 must cross the membrane during protein insertion whereas the other sites of Lhcb1 modification are positioned on the stromal side of LHCII. We conclude that a Ni2+ -complexed His tag and fusion to GFP inhibit translocation of the protein C-terminus across the thylakoid. Our observations indicate that the N-terminal and stromal domain of Lhcb1 need not traverse the thylakoid during protein insertion and are consistent with a loop mechanism in which only the C-terminus and the lumenal loop of Lhcb1 are translocated across the thylakoid. [source]


    Cloning of the guanylate kinase homologues AGK-1 and AGK-2 from Arabidopsis thaliana and characterization of AGK-1

    FEBS JOURNAL, Issue 2 2000
    Vinod Kumar
    Guanylate kinase is an essential enzyme for nucleotide metabolism, phosphorylating GMP to GDP or dGMP to dGDP. The low molecular mass cytosolic forms of guanylate kinase are implicated primarily in the regulation of the supply of guanine nucleotides to cell signalling pathways. The high molecular mass and membrane-associated forms of guanylate kinase homologues, notably found in neuronal tissues, are assigned roles in cell junction organization and transmembrane regulation. Here, we describe the first plant guanylate kinase-encoding genes, AGK1 and AGK2, from Arabidopsis thaliana. The nucleotide sequences of their genomic and cDNA clones predict proteins that carry N-terminal and C-terminal extensions of the guanylate kinase-like domain. The amino acid sequences of this domain share 46,52% identity with guanylate kinases from yeast, Escherichia coli, human, mouse and Caenorhabditis elegans. Arabidopsis guanylate kinases (AGKs) exhibit a high degree of conservation of active site residues and sequence motifs in common with other nucleoside monophosphate kinases, which suggests overall structural similarity of the plant proteins. Although bacterially expressed AGK-1 is enzymatically much less active than yeast guanylate kinase, its kinase domain is shown to complement yeast GUK1 recessive lethal mutations. AGKs are expressed ubiquitously in plant tissues with highest transcriptional activity detected in roots. The identification of AGKs provides new perspectives for understanding the role of guanylate kinases in plant cell signalling pathways. [source]


    The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance

    FEMS MICROBIOLOGY REVIEWS, Issue 2-3 2003
    Laura S. Busenlehner
    Abstract The SmtB/ArsR family of prokaryotic metalloregulatory transcriptional repressors represses the expression of operons linked to stress-inducing concentrations of di- and multivalent heavy metal ions. Derepression results from direct binding of metal ions by these homodimeric ,metal sensor' proteins. An evolutionary analysis, coupled with comparative structural and spectroscopic studies of six SmtB/ArsR family members, suggests a unifying ,theme and variations' model, in which individual members have evolved distinct metal selectivity profiles by alteration of one or both of two structurally distinct metal coordination sites. These two metal sites are designated ,3N (or ,3) and ,5 (or ,5C), named for the location of the metal binding ligands within the known or predicted secondary structure of individual family members. The ,3N/,3 sensors, represented by Staphylococcus aureus pI258 CadC, Listeria monocytogenes CadC and Escherichia coli ArsR, form cysteine thiolate-rich coordination complexes (S3 or S4) with thiophilic heavy metal pollutants including Cd(II), Pb(II), Bi(III) and As(III) via inter-subunit coordination by ligands derived from the ,3 helix and the N-terminal ,arm' (CadCs) or from the ,3 helix only (ArsRs). The ,5/,5C sensors Synechococcus SmtB, Synechocystis ZiaR, S. aureus CzrA, and Mycobacterium tuberculosis NmtR form metal complexes with biologically required metal ions Zn(II), Co(II) and Ni(II) characterized by four or more coordination bonds to a mixture of histidine and carboxylate ligands derived from the C-terminal ,5 helices on opposite subunits. Direct binding of metal ions to either the ,3N or ,5 sites leads to strong, negative allosteric regulation of repressor operator/promoter binding affinity, consistent with a simple model for derepression. We hypothesize that distinct allosteric pathways for metal sensing have co-evolved with metal specificities of distinct ,3N and ,5 coordination complexes. [source]


    The transcarboxylase domain of pyruvate carboxylase is essential for assembly of the peroxisomal flavoenzyme alcohol oxidase

    FEMS YEAST RESEARCH, Issue 7 2007
    Paulina Z. Ozimek
    Abstract Pyruvate carboxylase (Pyc1p) has multiple functions in methylotrophic yeast species. Besides its function as an enzyme, Pyc1p is required for assembly of peroxisomal alcohol oxidase (AO). Hence, Pyc1p-deficient cells share aspartate auxotrophy (Asp,) with a defect in growth on methanol as sole carbon source (Mut,). To identify regions in Hansenula polymorpha Pyc1p that are required for the function of HpPyc1p in AO assembly, a series of random mutations was generated in the HpPYC1 gene by transposon mutagenesis. Upon introduction of 18 mutant genes into the H. polymorpha PYC1 deletion strain (pyc1), four different phenotypes were obtained, namely Asp, Mut,, Asp, Mut+, Asp+ Mut,, and Asp+ Mut+. One mutant showed an Asp+ Mut, phenotype. This mutant produced HpPyc1p containing a pentapeptide insertion in the region that links the conserved N-terminal biotin carboxylation domain (BC) with the central transcarboxylation (TC) domain. Three mutants that were Asp, Mut, contained insertions in the TC domain, suggesting that this domain is important for both functions of Pyc1p. Analysis of a series of constructed C-terminal and N-terminal truncated versions of HpPyc1p showed that the TC domain of Pyc1p, including the region linking this domain to the BC domain, is essential for AO assembly. [source]


    A tumour-associated DEAD-box protein, rck/p54 exhibits RNA unwinding activity toward c-myc RNAs in vitro

    GENES TO CELLS, Issue 8 2003
    Yukihiro Akao
    Background:, The rck/p54 protein of 473 amino acids belongs to the family of DEAD-box/putative RNA helicase proteins. DEAD-box proteins have been implicated in a wide variety of cellular processes ranging from the initiation of protein synthesis and ribosome biosynthesis to premRNA splicing by means of modifying the RNA structure. Our previous data suggested that rck/p54 positively affected the translation initiation of c-myc mRNA. Results:, The data obtained from morphological studies and surface plasmon resonance assays clearly indicated that the protein specifically bound to c-myc RNA transcripts (RNAs) and exhibited RNA unwinding activity toward c-myc RNAs in the presence of ATP in vitro. Experiments using a deletion mutant of rck/p54 retaining only its N-terminal 289 amino acids demonstrated that the deleted C-terminal 184 amino acid domain is involved in the RNA unwinding activity. Conclusion:, These findings strongly suggest that rck/p54 may play an important role in translation initiation by restructuring mRNAs even in the cell and contribute to carcinogenesis. [source]


    Meu10 is required for spore wall maturation in Schizosaccharomyces pombe

    GENES TO CELLS, Issue 2 2002
    Takahiro Tougan
    Background: Many genes are meiosis and/or sporulation-specifically transcribed during this process. Isolation and analysis of these genes might help us to understand how meiosis and sporulation are regulated. For this purpose, we have isolated a large number of cDNA clones from Schizosaccharomyces pombe whose expression is up-regulated during meiosis. Results: We have isolated meu10+ gene, which encodes 416 amino acids and bears homology to SPS2 of Saccharomyces cerevisiae. A strain whose meu10+ gene has been deleted forms no viable spores. Thin-section electron micrographs showed that the meu10, strain has abnormally formed spore walls, and then they disrupt, allowing cytoplasmic material to escape. The Meu10-GFP fusion protein is localized to the spore periphery, thereafter returned to the cytoplasm after sporulation. Meu10-GFP localization to the spore wall was almost normal in the bgs2, or chs1, mutants that lack 1,3-,-glucan or chitin, respectively. In contrast, 1,3-,-glucan is abnormally localized in meu10, cells. Meu10 has an N-terminal domain with homology to the mammalian insulin receptor and a C-terminal domain with a transmembrane motif. Mutants whose N-terminal or C-terminal domain was truncated were severely defective for sporulation. Conclusions: Meu10 is a spore wall component and plays a pivotal role in the formation of the mature spore wall structure. [source]