NR Activity (nr + activity)

Distribution by Scientific Domains


Selected Abstracts


Regulation of nitrate reductase by nitric oxide in Chinese cabbage pakchoi (Brassica chinensis L.)

PLANT CELL & ENVIRONMENT, Issue 2 2008
SHAOTING DU
ABSTRACT Nitrate reductase (NR), a committed enzyme in nitrate assimilation, involves generation of nitric oxide (NO) in plants. Here we show that the NR activity was significantly enhanced by the addition of NO donors sodium nitroprusside (SNP) and NONOate (diethylamine NONOate sodium) to the culturing solution, whereas it was decreased by NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, both NO gas and SNP directly enhanced but cPTIO inhibited the NR activities of crude enzyme extracts and purified NR enzyme. The cPTIO terminated the interaction between NR-generated NO and the NR itself. Furthermore, the NR protein content was not affected by the SNP treatment. The investigation of the partial reactions catalysed by purified NR using various electron donors and acceptors indicated that the haem and molybdenum centres in NR were the two sites activated by NO. The results suggest that the activation of NR activity by NO is regulated at the post-translational level, probably via a direct interaction mechanism. Accordingly, the concentration of nitrate both in leaves and roots was decreased after 2 weeks of cultivation with SNP. The present study identifies a new mechanism of NR regulation and nitrate assimilation, which provides important new insights into the complex regulation of N-metabolism in plants. [source]


Thermoperiod affects the diurnal cycle of nitrate reductase expression and activity in pineapple plants by modulating the endogenous levels of cytokinins

PHYSIOLOGIA PLANTARUM, Issue 3 2009
Luciano Freschi
Nitrate reductase (NR, EC 1.6.6.1) activity in higher plants is regulated by a variety of environmental factors and oscillates with a characteristic diurnal rhythm. In this study, we have demonstrated that the diurnal cycle of NR expression and activity in pineapple (Ananas comosus, cv. Smooth Cayenne) can be strongly modified by changes in the day/night temperature regime. Plants grown under constant temperature (28°C light/dark) showed a marked increase in the shoot NR activity (NRA) during the first half of the light period, whereas under thermoperiodic conditions (28°C light/15°C dark) significant elevations in the NRA were detected only in the root tissues at night. Under both conditions, increases in NR transcript levels occurred synchronically about 4 h prior to the corresponding elevation of the NRA. Diurnal analysis of endogenous cytokinins indicated that transitory increases in the levels of zeatin, zeatin riboside and isopentenyladenine riboside coincided with the accumulation of NR transcripts and preceded the rise of NRA in the shoot during the day and in the root at night, suggesting these hormones as mediators of the temperature-induced modifications of the NR cycle. Moreover, these cytokinins also induced NRA in pineapple when applied exogenously. Altogether, these results provide evidence that thermoperiodism can modify the diurnal cycle of NR expression and activity in pineapple both temporally and spatially, possibly by modulating the day/night changes in the cytokinin levels. A potential relationship between the day/night NR cycle and the photosynthetic pathway performed by the pineapple plants (C3 or CAM) is also discussed. [source]


Regulation of nitrate reductase by nitric oxide in Chinese cabbage pakchoi (Brassica chinensis L.)

PLANT CELL & ENVIRONMENT, Issue 2 2008
SHAOTING DU
ABSTRACT Nitrate reductase (NR), a committed enzyme in nitrate assimilation, involves generation of nitric oxide (NO) in plants. Here we show that the NR activity was significantly enhanced by the addition of NO donors sodium nitroprusside (SNP) and NONOate (diethylamine NONOate sodium) to the culturing solution, whereas it was decreased by NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, both NO gas and SNP directly enhanced but cPTIO inhibited the NR activities of crude enzyme extracts and purified NR enzyme. The cPTIO terminated the interaction between NR-generated NO and the NR itself. Furthermore, the NR protein content was not affected by the SNP treatment. The investigation of the partial reactions catalysed by purified NR using various electron donors and acceptors indicated that the haem and molybdenum centres in NR were the two sites activated by NO. The results suggest that the activation of NR activity by NO is regulated at the post-translational level, probably via a direct interaction mechanism. Accordingly, the concentration of nitrate both in leaves and roots was decreased after 2 weeks of cultivation with SNP. The present study identifies a new mechanism of NR regulation and nitrate assimilation, which provides important new insights into the complex regulation of N-metabolism in plants. [source]


Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves

PLANT CELL & ENVIRONMENT, Issue 11 2000
W.-R. Scheible
ABSTRACT Diurnal changes of transcript levels for key enzymes in nitrate and organic acid metabolism and the accompanying changes of enzyme activities and metabolite levels were investigated in nitrogen-sufficient wild-type tobacco, in transfomants with decreased expression of nitrate reductase, and in nitrate-deficient wild-type tobacco. (i) In nitrogen-sufficient wild-type plants, transcript levels for nitrate reductase (NR, EC 1.6.6.1), nitrite reductase (NIR, EC 1.7.7.1) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were high at the end of the night and decreased markedly during the light period. The levels of these three transcripts were increased and the diurnal changes were damped in genotypes with decreased expression of nitrate reductase. The levels of these transcripts were very low in nitrate-limited wild-type plants, except for a small rise after irrigation with 0·2 mM nitrate. (ii) The levels of the transcripts for cytosolic pyruvate kinase (PK, EC 2.7.1.40), mitochondrial citrate synthase (CS, EC 4.1.3.7) and NADP-isocitrate dehydrogenase (NADP-ICDH, EC 1.1.1.42) were highest at the end of the light period and beginning of the night. These three transcripts increase and the diurnal changes were damped in genotypes with decreased expression of NR. (iii) The diurnal changes of transcript levels were accompanied by changes in the activities of the encoded enzymes. The activities of NR and PEPC were highest in the early part of the light period, whereas the activities of PK and NADP-ICDH were highest later in the light period and during the first part of the night and CS activity was highest at the end of the night. Activity of PEPC, PK, CS and NADP-ICDH increased and the diurnal changes were damped in genotypes with low expression of NR. Activity of all four enzymes decreased in nitrate-limited wild-type plants. (iv) In the light, malate accumulated, citrate decreased, and about 30% of the assimilated nitrate accumulated temporarily as glutamine, ammonium, glycine and serine. These changes were reversed during the night. (v) It is proposed that the diurnal changes of expression facilitate preferential synthesis of malate to act as a counter-anion for pH regulation during the first part of the light period when NR activity is high, and preferential synthesis of 2-oxoglutarate to act as a nitrogen acceptor later in the day when large amounts of nitrogen have accumulated in ammonium, glutamine and other amino acids including glycine in the photorespiration pathway, and NR activity has been decreased. [source]


Single amino acid variation in barley 14-3-3 proteins leads to functional isoform specificity in the regulation of nitrate reductase

THE PLANT JOURNAL, Issue 6 2005
Mark P. Sinnige
Summary The highly conserved family of 14-3-3 proteins function in the regulation of a wide variety of cellular processes. The presence of multiple 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 suggest functional isoform specificity of 14-3-3 isoforms in the regulation of target proteins. Indeed, several studies observed differences in affinity and functionality of 14-3-3 isoforms. However, the structural variation by which isoform specificity is accomplished remains unclear. Because other reports suggest that specificity is found in differential expression and availability of 14-3-3 isoforms, we used the nitrate reductase (NR) model system to analyse the availability and functionality of the three barley 14-3-3 isoforms. We found that 14-3-3C is unavailable in dark harvested barley leaf extract and 14-3-3A is functionally not capable to efficiently inhibit NR activity, leaving 14-3-3B as the only characterized isoform able to regulate NR in barley. Further, using site directed mutagenesis, we identified a single amino acid variation (Gly versus Ser) in loop 8 of the 14-3-3 proteins that plays an important role in the observed isoform specificity. Mutating the Gly residue of 14-3-3A to the alternative residue, as found in 14-3-3B and 14-3-3C, turned it into a potent inhibitor of NR activity. Using surface plasmon resonance, we show that the ability of 14-3-3A and the mutated version to inhibit NR activity correlates well with their binding affinity for the 14-3-3 binding motif in the NR protein, indicating involvement of this residue in ligand discrimination. These results suggest that both the availability of 14-3-3 isoforms as well as binding affinity determine isoform-specific regulation of NR activity. [source]