nNOS Inhibitor (nno + inhibitor)

Distribution by Scientific Domains


Selected Abstracts


Hypoxia induces complex I inhibition and ultrastructural damage by increasing mitochondrial nitric oxide in developing CNS

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2008
Sebastián Giusti
Abstract NO-mediated toxicity contributes to neuronal damage after hypoxia; however, the molecular mechanisms involved are still a matter of controversy. Since mitochondria play a key role in signalling neuronal death, we aimed to determine the role of nitrative stress in hypoxia-induced mitochondrial damage. Therefore, we analysed the biochemical and ultrastructural impairment of these organelles in the optic lobe of chick embryos after in vivo hypoxia,reoxygenation. Also, we studied the NO-dependence of damage and examined modulation of mitochondrial nitric oxide synthase (mtNOS) after the hypoxic event. A transient but substantial increase in mtNOS content and activity was observed at 0,2 h posthypoxia, resulting in accumulation of nitrated mitochondrial proteins measured by immunoblotting. However, no variations in nNOS content were observed in the homogenates, suggesting an increased translocation to mitochondria and not a general de novo synthesis. In parallel with mtNOS kinetics, mitochondria exhibited prolonged inhibition of maximal complex I activity and ultrastructural phenotypes associated with swelling, namely, fading of cristae, intracristal dilations and membrane disruption. Administration of the selective nNOS inhibitor 7-nitroindazole 20 min before hypoxia prevented complex I inhibition and most ultrastructural damage. In conclusion, we show here for the first time that hypoxia induces NO-dependent complex I inhibition and ultrastructural damage by increasing mitochondrial NO in the developing brain. [source]


Blockade of NMDA receptors and nitric oxide synthesis in the dorsolateral periaqueductal gray attenuates behavioral and cellular responses of rats exposed to a live predator

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2009
Daniele Cristina Aguiar
Abstract Innate fear stimulus induces activation of neurons containing the neuronal nitric oxide synthase enzyme (nNOS) in defensive-related brain regions such as the dorsolateral periaqueductal gray (dlPAG). Intra-dlPAG administration of nitric oxide synthase (NOS) inhibitors and glutamate antagonists induce anxiolytic-like responses. We investigated the involvement of nitric oxide (NO) and glutamate neurotransmission in defensive reactions modulated by dlPAG. We tested if intra-dlPAG injections of the selective nNOS inhibitor, N-propyl- L -arginine (NP), or the glutamate antagonist, AP7 (2-amino-7-phosphonoheptanoic acid), would attenuate behavioral responses and cellular activation induced by predator exposure (cat). Fos-like immunoreactivity (FLI) was used as a marker of neuronal functional activation, whereas nNOS immunohistochemistry was used to identify NOS neurons. Cat exposure induced fear responses and an increase of FLI in the dlPAG and dorsal premammillary nucleus (PMd). NP and AP7 attenuated the cat-induced behavioral responses. Whereas NP tended to attenuate FLI in the dlPAG, AP7 induced a significant reduction in cellular activation of this region. The latter drug, however, increased FLI and double-labeled cells in the PMd. Cellular activation of this region was significantly correlated with time spent near the cat (r = 0.7597 and 0.6057 for FLI and double-labeled cells). These results suggest that glutamate/NO-mediated neurotransmission in the dlPAG plays an important role in responses elicit by predator exposure. Blocking these neurotransmitter systems in this brain area impairs defensive responses. The longer time spent near the predator that follows AP7 effect could lead to an increased cellular activation of the PMd, a more rostral brain area that has also been related to defensive responses. © 2009 Wiley-Liss, Inc. [source]


L -NAME reverses quinolinic acid-induced toxicity in rat corticostriatal slices: Involvement of src family kinases

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2007
Cinzia Mallozzi
Abstract Quinolinic acid (QA) is an endogenous excitotoxin acting on N -methyl- d -aspartate receptors (NMDARs) that leads to the pathologic and neurochemical features similar to those observed in Huntington's disease (HD). The mechanism of QA toxicity also involves free radicals formation and oxidative stress. NMDARs are particularly vulnerable to the action of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that can act as modulators of the activity of protein tyrosine kinases (PTKs) and phosphotyrosine phosphatases (PTPs). Because QA is able to activate neuronal nitric oxide synthase (nNOS) as well as to stimulate the NMDARs, we evaluated the effect of N,-Nitro- l -arginine-methyl ester (l -NAME), a selective nNOS inhibitor, on QA-induced neurotoxicity in rat corticostriatal slices. In electrophysiologic experiments we observed that slice perfusion with QA induced a strong reduction of field potential (FP) amplitude, followed by a partial recovery at the end of the QA washout. In the presence of l -NAME the recovery of FP amplitude was significantly increased with respect to QA alone. In synaptosomes, prepared from corticostriatal slices after the electrophysiologic recordings, we observed that l -NAME pre-incubation reversed the QA-mediated inhibitory effects on protein tyrosine phosphorylation pattern, c-src, lyn, and fyn kinase activities and tyrosine phosphorylation of NMDAR subunit NR2B, whereas the PTP activity was not recovered in the presence of l -NAME. These findings suggest that NO plays a key role in the molecular mechanisms of QA-mediated excitotoxicity in experimental model of HD. © 2007 Wiley-Liss, Inc. [source]


Naphthoquinones and bioactive compounds from tobacco as modulators of neuronal nitric oxide synthase activity

PHYTOTHERAPY RESEARCH, Issue 12 2009
Priya Venkatakrishnan
Abstract Studies were conducted with extracts of several varieties of tobacco in search of neuronal nitric oxide synthase (nNOS) inhibitors which may be of value in the treatment of stroke. Current therapies do not directly exploit modulation of nNOS activity due to poor selectivity of the currently available nNOS inhibitors. The properties of a potentially novel nNOS inhibitor(s) derived from tobacco extracts, and the concentration-dependent, modulatory effects of the tobacco-derived naphthoquinone compound, 2,3,6-trimethyl-1,4-naphthoquinone (TMN), on nNOS activity were investigated, using 2-methyl-1,4-naphthoquinone (menadione) as a control. Up to 31 µM, both TMN and menadione stimulated nNOS-catalysed l -citrulline production. However, at higher concentrations of TMN (62.5,500 µM), the stimulation was lost in a concentration-dependent manner. With TMN, the loss of stimulation did not decrease beyond the control activity. With menadione (62.5,500 µM), the loss of stimulation surpassed that of the control (78 ± 0.01% of control activity), indicating a true inhibition of nNOS activity. This study suggests that potential nNOS inhibitors are present in tobacco, most of which remain to be identified. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Characteristics and function of cardiac mitochondrial nitric oxide synthase

THE JOURNAL OF PHYSIOLOGY, Issue 4 2009
Elena N. Dedkova
We used laser scanning confocal microscopy in combination with the nitric oxide (NO)-sensitive fluorescent dye DAF-2 and the reactive oxygen species (ROS)-sensitive dyes CM-H2DCF and MitoSOX Red to characterize NO and ROS production by mitochondrial NO synthase (mtNOS) in permeabilized cat ventricular myocytes. Stimulation of mitochondrial Ca2+ uptake by exposure to different cytoplasmic Ca2+ concentrations ([Ca2+]i= 1, 2 and 5 ,m) resulted in a dose-dependent increase of NO production by mitochondria when l -arginine, a substrate for mtNOS, was present. Collapsing the mitochondrial membrane potential with the protonophore FCCP or blocking the mitochondrial Ca2+ uniporter with Ru360 as well as blocking the respiratory chain with rotenone or antimycin A in combination with oligomycin inhibited mitochondrial NO production. In the absence of l -arginine, mitochondrial NO production during stimulation of Ca2+ uptake was significantly decreased, but accompanied by increase in mitochondrial ROS production. Inhibition of mitochondrial arginase to limit l -arginine availability resulted in 50% inhibition of Ca2+ -induced ROS production. Both mitochondrial NO and ROS production were blocked by the nNOS inhibitor (4S)- N -(4-amino-5[aminoethyl]aminopentyl)- N,-nitroguanidine and the calmodulin antagonist W-7, while the eNOS inhibitor l - N5 -(1-iminoethyl)ornithine (l -NIO) or iNOS inhibitor N -(3-aminomethyl)benzylacetamidine, 2HCl (1400W) had no effect. The superoxide dismutase mimetic and peroxynitrite scavenger MnTBAP abolished Ca2+ -induced ROS generation and increased NO production threefold, suggesting that in the absence of MnTBAP either formation of superoxide radicals suppressed NO production or part of the formed NO was transformed quickly to peroxynitrite. In the absence of l -arginine, mitochondrial Ca2+ uptake induced opening of the mitochondrial permeability transition pore (PTP), which was blocked by the PTP inhibitor cyclosporin A and MnTBAP, and reversed by l -arginine supplementation. In the presence of the mtNOS cofactor (6R)-5,6,7,8,-tetrahydrobiopterin (BH4; 100 ,m) mitochondrial ROS generation and PTP opening decreased while mitochondrial NO generation slightly increased. These data demonstrate that mitochondrial Ca2+ uptake activates mtNOS and leads to NO-mediated protection against opening of the mitochondrial PTP, provided sufficient availability of l -arginine and BH4. In conclusion, our data show the importance of l -arginine and BH4 for cardioprotection via regulation of mitochondrial oxidative stress and modulation of PTP opening by mtNOS. [source]


Naphthoquinones and bioactive compounds from tobacco as modulators of neuronal nitric oxide synthase activity

PHYTOTHERAPY RESEARCH, Issue 12 2009
Priya Venkatakrishnan
Abstract Studies were conducted with extracts of several varieties of tobacco in search of neuronal nitric oxide synthase (nNOS) inhibitors which may be of value in the treatment of stroke. Current therapies do not directly exploit modulation of nNOS activity due to poor selectivity of the currently available nNOS inhibitors. The properties of a potentially novel nNOS inhibitor(s) derived from tobacco extracts, and the concentration-dependent, modulatory effects of the tobacco-derived naphthoquinone compound, 2,3,6-trimethyl-1,4-naphthoquinone (TMN), on nNOS activity were investigated, using 2-methyl-1,4-naphthoquinone (menadione) as a control. Up to 31 µM, both TMN and menadione stimulated nNOS-catalysed l -citrulline production. However, at higher concentrations of TMN (62.5,500 µM), the stimulation was lost in a concentration-dependent manner. With TMN, the loss of stimulation did not decrease beyond the control activity. With menadione (62.5,500 µM), the loss of stimulation surpassed that of the control (78 ± 0.01% of control activity), indicating a true inhibition of nNOS activity. This study suggests that potential nNOS inhibitors are present in tobacco, most of which remain to be identified. Copyright © 2009 John Wiley & Sons, Ltd. [source]