nNOS Activity (nno + activity)

Distribution by Scientific Domains


Selected Abstracts


Differential Central NOS-NO Signaling Underlies Clonidine Exacerbation of Ethanol-Evoked Behavioral Impairment

ALCOHOLISM, Issue 3 2010
Tara S. Bender
Background:, The molecular mechanisms that underlie clonidine exacerbation of behavioral impairment caused by ethanol are not fully known. We tested the hypothesis that nitric oxide synthase (NOS)-derived nitric oxide (NO) signaling in the locus coeruleus (LC) is implicated in this phenomenon. Methods:, Male Sprague,Dawley rats with intracisternal (i.c.) and jugular vein cannulae implanted 6 days earlier were tested for drug-induced behavioral impairment. The latter was assessed as the duration of loss of righting reflex (LORR) and rotorod performance every 15 minutes until the rat recovered to the baseline walk criterion (180 seconds). In a separate cohort, we measured p-neuronal NOS (nNOS), p-endothelial NOS (eNOS), and p-ERK1/2 in the LC following drug treatment, vehicle, or NOS inhibitor. Results:, Rats that received clonidine [60 Ig/kg, i.v. (intravenous)] followed by ethanol (1 or 1.5 g/kg, i.v.) exhibited synergistic impairment of rotorod performance. Intracisternal pretreatment with nonselective NOS inhibitor N, -nitro- l -arginine methyl ester (l -NAME, 0.5 mg) or selective nNOS inhibitor N -propyl- l -arginine (1 ,g) exacerbated the impairment of rotorod performance caused by clonidine,ethanol combination. Exacerbation of behavioral impairment was caused by l -NAME enhancement of the effect of ethanol, not clonidine. l -NAME did not influence blood ethanol levels; thus, the interaction was pharmacodynamic. LORR caused by clonidine (60 ,g/kg, i.v.),ethanol (1 g/kg, i.v.) combination was abolished by selective inhibition of central eNOS (l -NIO, 10 ,g i.c.) but not by nNOS inhibition under the same conditions. Western blot analyses complemented the pharmacological evidence by demonstrating that clonidine,ethanol combination inhibits phosphorylation (activation) of nNOS (p-nNOS) and increases the level of phosphorylated eNOS (p-eNOS) in the LC; the change in p-nNOS was paralleled by similar change in LC p-ERK1/2. NOS inhibitors alone did not affect the level of nitrate/nitrite, p-nNOS, p-eNOS, or p-ERK1/2 in the LC. Conclusions:, Alterations in NOS-derived NO in the LC underlie clonidine,ethanol induced behavioral impairment. A decrease in nNOS activity, due at least partly to a reduction in nNOS phosphorylation, mediates rotorod impairment, while enhanced eNOS activity contributes to LORR, elicited by clonidine,ethanol combination. [source]


Ascorbate Inhibits Reduced Arteriolar Conducted Vasoconstriction in Septic Mouse Cremaster Muscle

MICROCIRCULATION, Issue 7 2007
REBECCA L. MCKINNON
ABSTRACT Objective: The mechanism of neuronal nitric oxide synthase (nNOS)-dependent reduction in arteriolar conducted vasoconstriction in sepsis, and the possible protection by antioxidants, are unknown. The authors hypothesized that ascorbate inhibits the conduction deficit by reducing nNOS-derived NO production. Methods: Using intravital microscopy and the cecal ligation and perforation (CLP) model of sepsis (24 h), arterioles in the cremaster muscle of male C57BL/6 wild-type mice were locally stimulated with KCl to initiate conducted vasoconstriction. The authors used the ratio of conducted constriction (500 , m upstream) to local constriction as an index of conduction (CR500). Cremaster muscle NOS enzymatic activity and protein expression, and plasma nitrite/nitrate levels were determined in control and septic mice. Intravenous ascorbate bolus (200 mg/kg in 0.1 ml of saline) was given early (0 h) or delayed at 23 h post CLP. Results: Sepsis reduced CR500 from 0.73 ± 0.03 to 0.21 ± 0.03, increased nNOS activity from 87 ± 9 to 220 ± 29 pmol/mg/h and nitrite/nitrate from 16 ± 1 to 39 ± 3 , M, without affecting nNOS protein expression. Ascorbate at 0 and 23 h prevented/reversed the conduction deficit and the increases in nNOS activity and nitrite/nitrate level. NO donor SNAP (S -nitroso- N -acetylpenicillamine) reestablished the conduction deficit in ascorbate-treated septic mice. Superoxide scavenger MnTBAP (Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) did not affect this deficit. Conclusion: These data indicate that early and delayed intravenous boluses of ascorbate prevent/reverse sepsis-induced deficit in arteriolar conducted vasoconstriction in the cremaster muscle by inhibiting nNOS-derived NO production. [source]


Neural mechanisms of early postinflammatory dysmotility in rat small intestine

NEUROGASTROENTEROLOGY & MOTILITY, Issue 12 2006
I. Demedts
Abstract, Although human postinflammatory dysmotility is known, so far animal studies have primarily investigated changes during inflammation. Here, we focused on postinflammatory changes in rat jejunal myenteric plexus and jejunal motility. Evolution of ethanol/2,4,6-tri-nitrobenzene sulphonic acid (TNBS)-induced inflammation was assessed histologically and by measuring myeloperoxidase activity (MPO). Electromyography and immunohistochemistry were performed 1 week after ethanol/TNBS and also after NG -nitro- l -arginine methyl ester (l -NAME) administration. Ethanol/TNBS induced a transient inflammation, with normalization of MPO and histological signs of an early phase of recovery after 1 week. The number of cholinergic neurones was not altered, but myenteric neuronal nitric oxide synthase (nNOS)-immunoreactivity was significantly lower in the early phase of recovery after TNBS compared with water (1.8 ± 0.2 vs 3.5 ± 0.2 neurones ganglion,1, P < 0.001). Interdigestive motility was disrupted with a loss of phase 1 quiescence, an increase of migrating myoelectric complex cycle length, a higher number of non-propagated activity fronts and a decrease of adequately propagated phase 3 s after TNBS. Administration of l -NAME resulted in a similar disruption of interdigestive motility patterns. In the early phase of recovery after ethanol/TNBS-induced jejunal inflammation, a loss of motor inhibition occurs due to a decrease of myenteric nNOS activity. These observations may provide a model for early postinflammatory dysmotility syndromes. [source]


Naphthoquinones and bioactive compounds from tobacco as modulators of neuronal nitric oxide synthase activity

PHYTOTHERAPY RESEARCH, Issue 12 2009
Priya Venkatakrishnan
Abstract Studies were conducted with extracts of several varieties of tobacco in search of neuronal nitric oxide synthase (nNOS) inhibitors which may be of value in the treatment of stroke. Current therapies do not directly exploit modulation of nNOS activity due to poor selectivity of the currently available nNOS inhibitors. The properties of a potentially novel nNOS inhibitor(s) derived from tobacco extracts, and the concentration-dependent, modulatory effects of the tobacco-derived naphthoquinone compound, 2,3,6-trimethyl-1,4-naphthoquinone (TMN), on nNOS activity were investigated, using 2-methyl-1,4-naphthoquinone (menadione) as a control. Up to 31 µM, both TMN and menadione stimulated nNOS-catalysed l -citrulline production. However, at higher concentrations of TMN (62.5,500 µM), the stimulation was lost in a concentration-dependent manner. With TMN, the loss of stimulation did not decrease beyond the control activity. With menadione (62.5,500 µM), the loss of stimulation surpassed that of the control (78 ± 0.01% of control activity), indicating a true inhibition of nNOS activity. This study suggests that potential nNOS inhibitors are present in tobacco, most of which remain to be identified. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Neuronal nitric oxide synthase activity in rat urinary bladder detrusor: participation in M3 and M4 muscarinic receptor function

AUTONOMIC & AUTACOID PHARMACOLOGY, Issue 3 2005
B. Orman
Summary 1,The aim of this paper was to determine the different signalling cascades involved in contraction of the rat urinary bladder detrusor muscle mediated via muscarinic acetylcholine receptors (muscarinic AChR). Contractile responses, phosphoinositides (IPs) accumulation, nitric oxide synthase (NOS) activity and cyclic GMP (cGMP) production were measured to determine the reactions associated with the effect of cholinergic agonist carbachol. The specific muscarinic AChR subtype antagonists and different inhibitors of the enzymatic pathways involved in muscarinic receptor-dependent activation of NOS and cGMP were tested. 2,Carbachol stimulation of M3 and M4 muscarinic AChR increased contractility, IPs accumulation, NOS activity and cGMP production. All of these effects were selectively blunted by 4-DAMP and tropicamide, M3 and M4 antagonists respectively. 3,The inhibitors of phospholipase C (PLC), calcium/calmodulin (CaM), neuronal NOS (nNOS) and soluble guanylate cyclase, but not of protein kinase C and endothelial NOS (eNOS), inhibited the carbachol action on detrusor contractility. These inhibitors also attenuated the muscarinic receptor-dependent increase in cGMP and activation of NOS. 4,In addition, sodium nitroprusside and 8-bromo-cGMP, induced negative relaxant effect. 5,The results obtained suggest that carbachol activation of M3 and M4 muscarinic AChRs, exerts a contractile effect on rat detrusor that is accompanied by an increased production of cGMP and nNOS activity. The mechanism appears to occur secondarily to stimulation of IPs turnover via PLC activation. This in turn, triggers cascade reactions involving CaM, leading to activation of nNOS and soluble guanylate cyclase. They, in turn, exert a modulator inhibitory cGMP-mediated mechanism limiting the effect of muscarinic AChR stimulation of the bladder. [source]


Chronic inhibition of nitric-oxide synthase induces hypertension and erectile dysfunction in the rat that is not reversed by sildenafil

BJU INTERNATIONAL, Issue 1 2010
Serap Gur
Study Type , Aetiology (case control) Level of Evidence 3b OBJECTIVE To evaluate the effect of N(G)-nitro- l -arginine methyl ester (L-NAME)-induced hypertension (HT) on erectile function in the rat and determine if the phosphodiesterase (PDE)-5 inhibitor, sildenafil, can reverse the effects of nitric oxide (NO) deficiency, as HT is a risk factor for erectile dysfunction (ED) and the NO synthase (NOS) inhibitor L-NAME induces NO-deficient HT. MATERIALS AND METHODS Thirty-six adult Sprague-Dawley male rats were divided into three groups, i.e. a control, L-NAME-HT (40 mg/rat/day in the drinking water for 4 weeks), and sildenafil-treated L-NAME-HT (1.5 mg/rat/day sildenafil, by oral gavage concomitantly with L-NAME). The erectile response expressed as a ratio of intracavernosal pressure (ICP)/mean arterial pressure (MAP), evaluated after electrical stimulation of the right cavernous nerve. The isometric tension of corpus cavernosum smooth muscle (CCSM) was measured in organ-bath experiments. NOS expression was determined immunohistochemically for neuronal (n)NOS and by Western blot analysis for endothelial (e) and inducible (i) NOS protein. cGMP levels were evaluated by enzyme-linked immunosorbent assay. RESULTS The erectile response was diminished in the HT group. Nitrergic and endothelium-dependent relaxation was reduced, while the relaxation response to sodium nitroprusside and contractile response to phenylephrine were not altered in CCSM from L-NAME-treated rats. HT rats showed decreased expression of nNOS, whereas eNOS and iNOS protein expression was increased. Sildenafil partly restored endothelial and molecular changes in CCSM from HT rats, but did not reverse the decreased erectile response, even as cGMP levels returned to normal levels. CONCLUSIONS Sildenafil treatment did not correct the ED in L-NAME-treated HT rats. Under sustained high blood pressure, up-regulation of PDE5 expression failed to reverse the depletion of neuronal NO and/or impaired nNOS activity. However, endothelium-dependent relaxation was restored. Drug targeting of neuronal dysfunction might delay the onset of ED in HT. [source]