N-methyl-D-aspartate Receptor (n-methyl-d-aspartate + receptor)

Distribution by Scientific Domains


Selected Abstracts


Decreased levels of PSD95 and two associated proteins and increased levels of BCl2 and caspase 3 in hippocampus from subjects with amnestic mild cognitive impairment: Insights into their potential roles for loss of synapses and memory, accumulation of A,, and neurodegeneration in a prodromal stage of Alzheimer's disease

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2010
Rukhsana Sultana
Abstract Alzheimer's disease (AD) is the most common form of dementia and is pathologically characterized by senile plaques, neurofibrillary tangles, synaptic disruption and loss, and progressive neuronal deficits. The exact mechanism(s) of AD pathogenesis largely remain unknown. With advances in technology diagnosis of a pre-AD stage referred to as amnestic mild cognitive impairment (MCI) has become possible. Amnestic MCI is characterized clinically by memory deficit, but normal activities of daily living and no dementia. In the present study, compared to controls, we observed in hippocampus from subjects with MCI a significantly decreased level of PSD95, a key synaptic protein, and also decreased levels of two proteins associated with PSD95, the N-methyl-D-aspartate receptor, subunit 2A (NR2A) and the low-density lipoprotein receptor-1 (LRP1). PSD95 and NR2A are involved in long-term potentiation, a key component of memory formation, and LRP1 is involved in efflux of amyloid beta-peptide (1-42). A, (1-42) conceivably is critical to the pathogenesis of MCI and AD, including the oxidative stress under which brain in both conditions exist. The data obtained from the current study suggest a possible involvement of these proteins in synaptic alterations, apoptosis and consequent decrements in learning and memory associated with the progression of MCI to AD. © 2009 Wiley-Liss, Inc. [source]


Endoplasmic reticulum-associated degradation of the NR1 but not the NR2 subunits of the N-methyl-D-aspartate receptor induced by inhibition of the N-glycosylation in cortical neurons

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2007
Sergio Gascón
Abstract The N-methyl-D-aspartate receptor (NMDAR) is fundamental to normal and pathological functioning of neurons. The receptor subunits are N-glycosylated proteins synthesized in the endoplasmic reticulum (ER) that fold, mature, and oligomerize as they transit through the secretory pathway. Although the early processes of biogenesis are fundamental to NMDAR expression and function, our knowledge of them is nevertheless limited. Additionally, the investigation of NMDAR synthesis is highly relevant, in that ER dysfunction, frequently associated with acute and degenerative brain diseases, might alter this process. We characterize here the effect of ER stress produced by inhibition of N-glycosylation on NMDAR synthesis and function. We use first heterologous systems of NMDAR expression in which NR1 and NR2A subunits are synthesized in nonneuronal cells. The function of these NMDARs as Ca2+ channels is repressed by tunicamycin, because of the inhibition of NR1, but no NR2A, synthesis. The regulation of NR1 is relevant to the central nervous system, in that a dramatic decrease in synthesis of this subunit and assembly of NMDARs is observed in cortical neurons treated with tunicamycin. The inhibition of NR1 synthesis is not due to changes in levels of mRNA but associated with the earliest stages in NMDAR biogenesis. The inhibition of N-glycosylation activates ER-specific stress responses in neurons, which include the ER-associated degradation (ERAD) mechanism responsible for differential and extremely efficient degradation of nonglycosylated NR1 by the proteasome after ubiquitination. Because this is an obligatory NMDAR component, the significant sensitivity of NR1 to ER stress will have important consequences on receptor function. © 2007 Wiley-Liss, Inc. [source]


Anti,N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents,

ANNALS OF NEUROLOGY, Issue 1 2009
Nicole R. Florance MD
Objective To report the clinical features of anti,N-methyl-D-aspartate receptor (NMDAR) encephalitis in patients , 18 years old. Methods Information was obtained by the authors or referring physicians. Antibodies were determined by immunocytochemistry and enzyme-linked immunosorbent assay (ELISA) using HEK293 cells ectopically expressing NR1. Results Over an 8-month period, 81 patients (12 male) with anti-NMDAR encephalitis were identified. Thirty-two (40%) were ,18 years old (youngest 23 months, median 14 years); 6 were male. The frequency of ovarian teratomas was 56% in women >18 years old, 31% in girls ,18 years old (p = 0.05), and 9% in girls ,14 years old (p = 0.008). None of the male patients had tumors. Of 32 patients ,18 years old, 87.5% presented with behavioral or personality change, sometimes associated with seizures and frequent sleep dysfunction; 9.5% with dyskinesias or dystonia; and 3% with speech reduction. On admission, 53% had severe speech deficits. Eventually, 77% developed seizures, 84% stereotyped movements, 86% autonomic instability, and 23% hypoventilation. Responses to immunotherapy were slow and variable. Overall, 74% had full or substantial recovery after immunotherapy or tumor removal. Neurological relapses occurred in 25%. At the last follow-up, full recovery occurred more frequently in patients who had a teratoma that was removed (5/8) than in those without a teratoma (4/23; p = 0.03). Interpretation Anti-NMDAR encephalitis is increasingly recognized in children, comprising 40% of all cases. Younger patients are less likely to have tumors. Behavioral and speech problems, seizures, and abnormal movements are common early symptoms. The phenotype resembles that of the adults, although dysautonomia and hypoventilation are less frequent or severe in children. Ann Neurol 2009;66:11,18 [source]


Antidepressants in the Treatment of Neuropathic Pain

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2005
Søren H. Sindrup
Tricyclic antidepressants and anticonvulsants have long been the mainstay of treatment of this type of pain. Tricyclic antidepressants may relieve neuropathic pain by their unique ability to inhibit presynaptic reuptake of the biogenic amines serotonin and noradrenaline, but other mechanisms such as N-methyl-D-aspartate receptor and ion channel blockade probably also play a role in their pain-relieving effect. The effect of tricyclic antidepressants in neuropathic pain in man has been demonstrated in numerous randomised, controlled trials, and a few trials have shown that serotonin noradrenaline and selective serotonin reuptake inhibitor antidepressants also relieve neuropathic pain although with lower efficacy. Tricyclic antidepressants will relieve one in every 2,3 patients with peripheral neuropathic pain, serotonin noradrenaline reuptake inhibitors one in every 4,5 and selective serotonin reuptake inhibitors one in every 7 patients. Thus, based on efficacy measures such as numbers needed to treat, tricyclic antidepressants tend to work better than the anticonvulsant gabapentin and treatment options such as tramadol and oxycodone, whereas the serotonin noradrenaline reuptake inhibitor venlafaxine appears to be equally effective with these drugs and selective serotonin reuptake inhibitors apparently have lower efficacy. Head-to-head comparisons between antidepressants and the other analgesics are lacking. Contraindications towards the use of tricyclic antidepressants and low tolerability in general of this drug class , may among the antidepressants , favour the use of the serotonin noradrenaline reuptake inhibitors. A recent study on bupropion, which is a noradrenaline and dopamine uptake inhibitor, indicated a surprisingly high efficacy of this drug in peripheral neuropathic pain. In conclusion, antidepressants represent useful tools in neuropathic pain treatment and must still be considered as first line treatments of neuropathic pain. However, without head-to-head comparisons between antidepressants and other analgesics, it is not possible to provide real evidence-based treatment algorithms for neuropathic pain. [source]


N-methyl-D-aspartate-stimulated ERK1/2 signaling and the transcriptional up-regulation of plasticity-related genes are developmentally regulated following in vitro neuronal maturation

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2009
Xianju Zhou
Abstract The general features of neuroplasticity are developmentally regulated. Although it has been hypothesized that the loss of plasticity in mature neurons may be due to synaptic saturation and functional reduction of N-methyl-D-aspartate receptors (NMDAR), the molecular mechanisms remain largely unknown. We examined the effects of NMDAR activation and KCl-mediated membrane depolarization on ERK1/2 signaling following in vitro maturation of cultured cortical neurons. Although NMDA stimulated a robust increase in intracellular calcium at both DIV (day in vitro) 3 and 14, the activation of ERK1/2 and cAMP responsive element-binding protein (CREB) was impaired at DIV 14. Specifically, the phosphorylation of ERK1/2 was stimulated by both NMDA and KCl at DIV 3. However, at DIV 14, NMDA- but not KCl-stimulated ERK1/2 and CREB phosphorylation was significantly diminished. Consistently, the NMDA-induced transcription of ERK/CREB-regulated genes Bdnf exon 4, Arc, and zif268 was significantly attenuated at DIV 14. Moreover, in comparison with 3 DIV neurons, the phosphorylated-ERK1/2 in 14 DIV neurons displayed a tremendous increase following maturation and was more susceptible to dephosphorylation. Blocking calcium channels by nifedipine or NMDAR by APV caused a more dramatic ERK dephosphorylation in 14 DIV neurons. We further demonstrate that the loss of plasticity-related signaling is unrelated to NMDA-induced cell death of the 14 DIV neurons. Taken together, these results suggest that the attenuation of certain aspects of neuroplasticity following maturation may be due to the reduction of NMDAR-mediated gene transcription and a saturation of ERK1/2 activity. © 2009 Wiley-Liss, Inc. [source]


Effects of binocular form deprivation on the excitatory post-synaptic currents mediated by N-methyl-D-aspartate receptors in rat visual cortex

CLINICAL & EXPERIMENTAL OPHTHALMOLOGY, Issue 3 2004
Wei Qin MD
Abstract Purpose:,To investigate the effects of binocular form deprivation (BFD) on the excitatory post-synaptic currents (EPSCs) mediated by the N-methyl-D-aspartate (NMDA) receptor (NMDA-EPSCs), and the proportion of NMDA-EPSCs relative to glutamate receptor currents (glutamate-EPSCs) in rat visual cortex. Methods:,Binocular form deprivation was achieved by suturing the eyelids of Wistar rats at postnatal day (PD) 14, before eye-opening. Visual cortical slices (300 µm) were prepared from normal and BFD Wistar rats aged PD 14, 21 and 28. Recordings were obtained in slices from layer II to IV using the whole-cell patch-clamp technique. Glutamate-EPSCs were isolated in the presence of bicuculline methiodide (20 µmol/L) in the bathing medium, and NMDA-EPSCs were isolated with a combination of bicuculline methiodide (20 µmol/L) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 20 µmol/L). In addition, D,L-2-amino-5-phosphonovalerate (AP-5, 20 µmol/L) was applied to study the NMDA-only mediated currents. For each cell, the ratio of peak NMDA to glutamate EPSCs was calculated. Results:,During visual development, the decay time constant of NMDA-EPSCs became shorter after eye-opening in normal rats (F = 5.949, P <0.05; PD 28 vs PD 14, P = 0.027), but not in rats with BFD (P > 0.05). The weighted time constant of NMDA-EPSCs in the visual cortex became shorter after the rats' eyes were opened in the normal group (F2,37 = 4.727, P = 0.015; PD 28 vs PD 14, P = 0.035), but not in the BFD group (P > 0.05). However, the rise time constant and peak value of NMDA-EPSCs showed no significant changes in normal and BFD groups (P > 0.05). The ratio of NMDA-EPSCs to glutamate-EPSCs became gradually smaller with age in the normal rats (F = 4.661, P < 0.05; PD 28 vs PD 14, P = 0.025), but not in the BFD group (P > 0.05). Conclusions:,These studies reveal that the proportion of NMDA-EPSCs relative to glutamate-EPSCs and the decay time constant of NMDA-EPSCs are influenced by BFD. These changes may reflect important experience-dependent modifications of neuronal synapses in visual cortex. [source]