Home About us Contact | |||
NGF Treatment (ngf + treatment)
Selected AbstractsNerve growth factor increases airway responses and decreases levels of exhaled nitric oxide during histamine challenge in an in vivo guinea-pig modelACTA PHYSIOLOGICA, Issue 2 2001S. G. Friberg There is a growing body of evidence supporting the idea that nerve growth factor (NGF) may be involved in the development of asthma-associated symptoms, such as airway hyper-responsiveness. Increased levels of NGF have recently been described in serum and in the airways of asthmatics. We have examined whether exhaled nitric oxide (NO) levels might be altered during the increased airway responses upon NGF treatment in guinea-pigs in vivo. Intravenous (i.v.) administration of histamine normally elicits a rapid peak in insufflation pressure (IP) and in exhaled NO, followed by a period of decreased concentrations of exhaled NO. Anaesthetized guinea-pigs were pre-treated intravenously with either saline, 4 or 80 ng kg,1 NGF 30 min before i.v. challenge with 16 ,g kg,1 histamine. At 80 ng kg,1 NGF significantly enhanced the airway obstruction caused by histamine, whereas the peak acute increase in exhaled NO was not enhanced. Following the increase, came a rapid drop, an effect enforced in the NGF treated animals. Subsequently, the time to return to 90% of resting exhaled NO was increased, from 12 min in saline-treated animals to 48 min in NGF-treated animals. Our data confirm that NGF can enhance airway responses to histamine. Moreover, our study shows a decrease in exhaled NO following a histamine challenge, an effect enhanced by NGF. A reduced ability to release exhaled NO may be a mechanism for increased airway responses during elevated NGF levels. The interaction between NGF and airway NO formation, and its relation to airway responses, merit further investigation. [source] Reversible protein kinase C activation in PC12 cells: effect of NGF treatmentEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2000Jean-Luc Dupont Abstract Although protein kinase C (PKC) is a key enzyme in the signal transduction process, there is little information on the mechanism leading to PKC activation in living cells. Using a new fluorescence imaging method, we studied this mechanism and correlated PKC conformational changes with intracellular Ca2+ concentration. PC12 cells were simultaneously loaded with Fura-2-AM and Fim-1, two fluorescent probes, which recognize Ca2+ and PKC, respectively. KCl and carbachol (an agonist to muscarinic receptors) applications induced dose-dependent increases of fluorescence for both probes. Both Ca2+ and PKC responses were observed within seconds following KCl or carbachol application, and were reversible upon stimulus withdrawal. PKC activation kinetics was slightly more rapid than the Ca2+ response after KCl application. After nerve growth factor (NGF) treatment of the cells, the amplitude of the KCl-induced PKC responses was larger indicating an increase in the activated PKC-pool in these cells. This difference between control and NGF-treated cells was not observed following carbachol application, suggesting the involvement of different PKC pools. While the Ca2+ response uniformly occurred in the cytosol, the PKC response displayed a patch pattern with higher intensities in the peripheral zone near the plasma membrane. This heterogeneous distribution of PKC activation sites was similar to the immunocytological localization of Ca2+ -dependent and independent PKC isoforms, which suggested that at least several PKC isoforms interacted with intracellular elements. Upon repeated stimulation, the PKC response rapidly desensitized. [source] Expression of Acid-Sensing Ion Channel 3 (ASIC3) in Nucleus Pulposus Cells of the Intervertebral Disc Is Regulated by p75NTR and ERK Signaling,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2007Yoshiyasu Uchiyama Abstract Although a recent study has shown that skeletal tissues express ASICs, their function is unknown. We show that intervertebral disc cells express ASIC3; moreover, expression is uniquely regulated and needed for survival in a low pH and hypoeromsotic medium. These findings suggest that ASIC3 may adapt disc cells to their hydrodynamically stressed microenvironment. Introduction: The nucleus pulposus is an avascular, hydrated tissue that permits the intervertebral disc to resist compressive loads to the spine. Because the tissue is hyperosmotic and avascular, the pH of the nucleus pulposus is low. To determine the mechanisms by which the disc cells accommodate to the low pH and hypertonicity, the expression and regulation of the acid sensing ion channel (ASIC)3 was examined. Materials and Methods: Expression of ASICs in cells of the intervertebral disc was analyzed. To study its regulation, we cloned the 2.8-kb rat ASIC3 promoter and performed luciferase reporter assays. The effect of pharmacological inhibition of ASICs on disc cell survival was studied by measuring MTT and caspase-3 activities. Results: ASIC3 was expressed in discal tissues and cultured disc cells in vitro. Because studies of neuronal cells have shown that ASIC3 expression and promoter activity is induced by nerve growth factor (NGF), we examined the effect of NGF on nucleus pulposus cells. Surprisingly, ASIC3 promoter activity did not increase after NGF treatment. The absence of induction was linked to nonexpression of tropomyosin-related kinase A (TrkA), a high-affinity NGF receptor, although a modest expression of p75NTR was seen. When treated with p75NTR antibody or transfected with dominant negative-p75NTR plasmid, there was significant suppression of ASIC3 basal promoter activity. To further explore the downstream mechanism of control of ASIC3 basal promoter activity, we blocked p75NTR and measured phospho extracellular matrix regulated kinase (pERK) levels. We found that DN-p75NTR suppressed NGF mediated transient ERK activation. Moreover, inhibition of ERK activity by dominant negative-mitogen activated protein kinase kinase (DN-MEK) resulted in a dose-dependent suppression of ASIC3 basal promoter activity, whereas overexpression of constitutively active MEK1 caused an increase in ASIC3 promoter activity. Finally, to gain insight in the functional importance of ASIC3, we suppressed ASIC activity in nucleus pulposus cells. Noteworthy, under both hyperosmotic and acidic conditions, ASIC3 served to promote cell survival and lower the activity of the pro-apoptosis protein, caspase-3. Conclusions: Results of this study indicate that NGF serves to maintain the basal expression of ASIC3 through p75NTR and ERK signaling in discal cells. We suggest that ASIC3 is needed for adaptation of the nucleus pulposus and annulus fibrosus cells to the acidic and hyperosmotic microenvironment of the intervertebral disc. [source] Neuroserpin regulates neurite outgrowth in nerve growth factor-treated PC12 cellsJOURNAL OF NEUROCHEMISTRY, Issue 6 2002Parmjeet K. Parmar Abstract Neuroserpin is a serine protease inhibitor widely expressed in the developing and adult nervous systems and implicated in the regulation of proteases involved in processes such as synaptic plasticity, neuronal migration and axogenesis. We have analysed the effect of neuroserpin on growth factor-induced neurite outgrowth in PC12 cells. We show that small changes in neuroserpin expression result in changes to the number of cells extending neurites and total neurite length following NGF treatment. Increased expression of neuroserpin resulted in a decrease in the number of cells extending neurites and a reduction in total free neurite length whereas reduced levels of neuroserpin led to a small increase in the number of neurite extending cells and a significant increase in total free neurite length compared to the parent cell line. Neuroserpin also altered the response of PC12 cells to bFGF and EGF treatment. Neuroserpin was localised to dense cored secretory vesicles in PC12 cells but was unable to complex with its likely enzyme target, tissue plasminogen activator at the acidic pH found in these vesicles. These data suggest that modulation of neuroserpin levels at the extending neurite growth cone may play an important role in regulating axonal growth. [source] Mutual effects of caveolin and nerve growth factor signaling in pig oligodendrocytesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2010Matthias Schmitz Abstract Signaling of growth factors may depend on the recruitment of their receptors to specialized microdomains. Previous reports on PC12 cells indicated an interaction of raft-organized caveolin and TrkA signaling. Because porcine oligodendrocytes (OLs) respond to nerve growth factor (NGF), we were interested to know whether caveolin also plays a role in oligodendroglial NGF/TrkA signaling. OLs expressed caveolin at the plasma membrane but also intracellularly. This was partially organized in the classically ,-shaped invaginations, which may represent caveolae. We could show that caveolin and TrkA colocalize by using a discontinuous sucrose gradient (Song et al. [1996] J. Biol. Chem. 271:9690,9697), MACS technology, and immunoprecipitation. However, differential extraction of caveolin and TrkA with Triton X-100 at 4°C indicated that caveolin and TrkA are probably not exclusively present in detergent-resistant, caveolin-containing rafts (CCRs). NGF treatment of OLs up-regulated the expression of caveolin-1 (cav-1) and stimulated tyrosine-14 phosphorylation of cav-1. Furthermore, OLs were transfected with cav-1-specific small interfering RNA (siRNA). A knockdown of cav-1 resulted in a reduced activation of downstream components of the NGF signaling cascade, such as p21Ras and mitogen-activated protein kinase (MAPK) after NGF exposure of OLs. Subsequently, increased oligodendroglial process formation via NGF was impaired. The present study indicates that CCRs/caveolin could play a modulating role during oligodendroglial differentiation and regeneration. © 2009 Wiley-Liss, Inc. [source] Nerve growth factor-induced substance P in capsaicin-insensitive vagal neurons innervating the lower mouse airwayCLINICAL & EXPERIMENTAL ALLERGY, Issue 9 2004Q. T. Dinh Summary Background Nerve growth factor (NGF) is elevated in allergic diseases such as bronchial asthma and can lead to an induction of substance P (SP) and related neuropeptides in guinea-pigs large-diameter, neurofilament-positive airway neurons. Objective In the present study, the effect of NGF on tyrosine kinase receptor trkA and the capsaicin receptor TRPV1 expression in airway-specific vagal sensory neurons located in the jugular,nodose ganglia complex (JNC) of mice was investigated. Methods Using retrograde neuronal tracing in combination with double-labelling immunohistochemistry, SP, trkA- and TRPV1-receptor expression was examined in airway-specific sensory neurons of BALB/c mice before and after NGF treatment. Results NGF injected into the lower airway was able to induce SP (13.0±2.03% vs. 5.9±0.33%) and trkA expression (78±2.66% vs. 60±2.11%) in larger diameter (>25 ,m), capsaicin-insensitive and trkA-positive vagal sensory neurons that were retrograde-labelled with Fast Blue dye from the main stem bronchi. Conclusion Based on the extent of SP and trkA co-expression in airway-specific neurons by NGF treatment, the present study suggests that, following a peripheral activation of trkA receptor on SP afferent by NGF which is elevated in allergic inflammation, there may be trkA-mediated SP induction to mediate neurogenic airway inflammation. [source] EGF and NGF injected into the brain of old mice enhance BDNF and ChAT in proliferating subventricular zoneJOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2003Paola Tirassa Abstract The response of cells localized in the brain subventricular zone (SVZ) to growth factor stimulation has been largely described for development and adult life, whereas no information on their behavior during aging is available. To address the question of whether the cells in the SVZ of old mice respond to the intracerebroventricular administration of epidermal growth factor (EGF) and nerve growth factor (NGF), we studied the distribution of proliferating cells and the effects on ChAT and brain-derived neurotrophic factor (BDNF) synthesis in forebrain and SVZ. It was found that the conjoint administration of EGF + NGF produced a major increase in ChAT expression in both forebrain and SVZ. The ChAT mRNA levels and the number of ChAT positive cells localized in the ventricular border and in the parenchyma of SVZ area were also increased significantly in the mice receiving EGF + NGF. Enhanced numbers of SVZ cells expressing proliferative markers were also discovered in EGF + NGF treated mice and some of these cells expressed cholinergic markers, as demonstrated by double immunostaining. In addition, EGF and NGF treatments significantly upregulate BDNF protein and mRNA levels in this brain region. The present study demonstrates that cells localized in SVZ of aged mouse brain retain the capacity to respond to EGF and NGF and that after stimulation with these two growth factors, the synthesis of ChAT and BDNF also increases. The implication that cells of the SVZ remain a reservoir of cholinergic and BDNF-positive neurons in aged brain opens a new perspective for understanding the role of growth factors during neurodegenerative disorders associated with aging. © 2003 Wiley-Liss, Inc. [source] |