ND5 Gene (nd5 + gene)

Distribution by Scientific Domains


Selected Abstracts


Rangewide population genetic structure of the African malaria vector Anopheles funestus

MOLECULAR ECOLOGY, Issue 14 2005
A. P. MICHEL
Abstract Anopheles funestus is a primary vector of malaria in Africa south of the Sahara. We assessed its rangewide population genetic structure based on samples from 11 countries, using 10 physically mapped microsatellite loci, two per autosome arm and the X (N = 548), and 834 bp of the mitochondrial ND5 gene (N = 470). On the basis of microsatellite allele frequencies, we found three subdivisions: eastern (coastal Tanzania, Malawi, Mozambique and Madagascar), western (Burkina Faso, Mali, Nigeria and western Kenya), and central (Gabon, coastal Angola). A. funestus from the southwest of Uganda had affinities to all three subdivisions. Mitochondrial DNA (mtDNA) corroborated this structure, although mtDNA gene trees showed less resolution. The eastern subdivision had significantly lower diversity, similar to the pattern found in the codistributed malaria vector Anopheles gambiae. This suggests that both species have responded to common geographic and/or climatic constraints. The western division showed signatures of population expansion encompassing Kenya west of the Rift Valley through Burkina Faso and Mali. This pattern also bears similarity to A. gambiae, and may reflect a common response to expanding human populations following the development of agriculture. Due to the presumed recent population expansion, the correlation between genetic and geographic distance was weak. Mitochondrial DNA revealed further cryptic subdivision in A. funestus, not detected in the nuclear genome. Mozambique and Madagascar samples contained two mtDNA lineages, designated clade I and clade II, that were separated by two fixed differences and an average of 2% divergence, which implies that they have evolved independently for ,1 million years. Clade I was found in all 11 locations, whereas clade II was sampled only on Madagascar and Mozambique. We suggest that the latter clade may represent mtDNA capture by A. funestus, resulting from historical gene flow either among previously isolated and divergent populations or with a related species. [source]


A population genetic comparison of argali sheep (Ovis ammon) in Mongolia using the ND5 gene of mitochondrial DNA; implications for conservation

MOLECULAR ECOLOGY, Issue 5 2004
T. Tserenbataa
Abstract We sequenced 556 bp of the mitochondrial ND5 gene to infer aspects of population structure and to test subspecific designations of argali sheep (Ovis ammon) in Mongolia. Analysis of molecular variance (amova) revealed greater variation within than among putative subspecies and populations, suggesting high levels female-mediated gene flow. Compared with bighorn sheep (O. canadensis) in North America, substantially less differentiation in mitochondrial DNA was found among argali populations over 1200 km than was found among bighorn populations over 250 km. This result is consistent with differences in argali and bighorn life history traits. Argali run for long distances across open terrain in the presence of a threat rather than running up into steep escape terrain like bighorn sheep do. Our results suggest recognizing only one Evolutionary Significant Unit (subspecies) of argali in Mongolia, but they may support recognizing two Management Units, because two regions do exhibit slightly different haplotype frequencies at the ND5 gene of mtDNA. [source]


Is the mitochondrial complex I ND5 gene a hot-spot for MELAS causing mutations?

ANNALS OF NEUROLOGY, Issue 1 2003
Danae Liolitsa PhD
We identified two novel heteroplasmic mitochondrial DNA point mutations in the gene encoding the ND5 subunit of complex I: a 12770A,G transition identified in a patient with MELAS (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes) and a 13045A,C transversion in a patient with a MELAS/Leber's hereditary optic neuropathy/Leigh's overlap syndrome. Biochemical analysis of muscle homogenates showed normal or very mildly reduced complex I activity. Histochemistry was normal. Our observations add to the evidence that mitochondrial ND5 protein coding gene mutations frequently associate with the MELAS phenotype, and it highlights the role of complex I dysfunction in MELAS. Ann Neurol 2003 [source]


Genome size evolution and polyploidy in the Daphnia pulex complex (Cladocera: Daphniidae)

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009
ROLAND VERGILINO
Genome size was estimated in 49 clones of the Daphnia pulex complex from temperate and subarctic locations using flow cytometry and microsatellite DNA analyses. Significant genome size differences were found in diploid species belonging to the two genetically distinct groups (the pulicaria and the tenebrosa groups), with clones from the tenebrosa group having genome sizes 22% larger than those in the pulicaria group. Combined flow cytometry and microsatellite DNA analyses revealed that nearly all polyploid clones in the D. pulex complex are triploid and not tetraploid, as was previously suggested. Sequencing analyses of the ND5 gene to position clones in their respective clades within the D. pulex complex have uncovered three triploid clones of Daphnia middendorffiana with a D. pulex maternal parent. This result was unexpected because Daphnia pulicaria has always been identified as the maternal parent of these hybrid polyploid clones. Triploid clones likely owe their origins to interactions between sexual and asexual populations. Further interactions in the tenebrosa group have generated tetraploid clones but these events have been rare. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 68,79. [source]