N Compounds (n + compound)

Distribution by Scientific Domains


Selected Abstracts


Effects of Drought on the Competitive Interference of an Early Successional Species (Rubus fruticosus) on Fagus sylvatica L. Seedlings: 15N Uptake and Partitioning, Responses of Amino Acids and other N Compounds

PLANT BIOLOGY, Issue 3 2002
M. N. Fotelli
Abstract: We assessed the role of water availability as a factor regulating the ability of beech seedlings to cope with competitive interference for nitrogen resources by an early successional species (Rubus fruticosus). A glasshouse experiment was performed with two levels of interference (beech with and without R. fruticosus) and three levels of irrigation (high, intermediate, none). 15N uptake and partitioning of both species, and composition of N pools in leaves, roots and phloem of beech, were determined. Under all irrigation regimes, 15N uptake by beech seedlings decreased when grown together with R. fruticosus. R. fruticosus had higher 15N uptake rates than beech, under all water supply levels. When irrigation was reduced, a substantial decrease in 15N uptake of beech seedlings and a concurrent increase in 15N uptake by R. fruticosus were observed. Interference by R. fruticosus and low irrigation also affected the 15N partitioning in beech seedlings and resulted in reduced allocation of 15N to the roots. The combination of competitive interference and lack of irrigation led to an increase in soluble non-protein N in roots and leaves of beech, due to protein degradation. This response was attributed to an increase in levels of amino acids serving as osmoprotectants under these conditions. The concentration of proline in leaves of beech was negatively correlated to shoot water potential. A competition-induced reduction of total N in leaves of beech under high and intermediate irrigation was found. These results illustrate (1) the advantage of R. fruticosus in terms of N uptake when compared to young beech, particularly under inadequate water supply, and (2) the changes in N composition of beech seedlings in order to cope with reduced soil water and interference by R. fruticosus. [source]


Nitrogen and phosphorus availability limit N2 fixation in bean

NEW PHYTOLOGIST, Issue 2 2000
E. O. LEIDI
Availability of nitrogen (N) and phosphorus (P) might significantly affect N2 fixation in legumes. The interaction of N and P was studied in common bean (Phaseolus vulgaris), considering their effects on nodulation and N2 fixation, nitrate reductase activity, and the composition of N compounds in xylem sap. The effect of N on the uptake of P by plants was estimated by analysing rhizospheric pH and P concentration in xylem sap and in plant shoots. Inoculated bean plants were grown in pots containing perlite/vermiculite in two experiments with different amounts of P and N. In a third experiment, bean plants were grown on two soil types or on river sand supplied with different concentrations of N. At harvest, shoot growth, number of nodules and mass, and nitrogenase activity were determined. Xylem sap was collected for the determination of ureides, amino acids, nitrate and phosphate concentration. At low nitrate concentration (1 mM), increasing amounts of P promoted both nodule formation and N2 fixation, measured as ureide content in the xylem sap. However, at high nitrate concentration (10 mM), nodulation and N2 fixation did not improve with increased P supply. Glutamine and aspartate were the main organic N compounds transported in the xylem sap of plants grown in low nitrate, whereas asparagine was the dominant N compound in xylem sap from plants grown in high nitrate. Nitrate reductase activity in roots was higher than in shoots of plants grown with low P and high N. In both soils and in the sand experiment, increased application of N decreased nodule mass and number, nitrogenase activity and xylem ureides but increased the concentration of asparagine in xylem sap. Increasing P nutrition improved symbiotic N2 fixation in bean only at low N concentrations. It did not alleviate the inhibitory effect of high nitrate concentration on N2 fixation. A decrease in plant P uptake was observed, as indicated by a lower concentration of P in the xylem sap and shoots, correlating with the amount of N supplied. Simultaneously with the specific inhibition of N2 fixation, high nitrate concentrations might decrease P availability, thus inhibiting even further the symbiotic association because of the high P requirement for nodulation and N2 fixation. [source]


Estimation of net nitrogen flux between the atmosphere and a semi-natural grassland ecosystem in Hungary

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2010
A. Machon
The aim of this work is to estimate the net N balance (deposition , emission) between the atmosphere and a semi-arid, semi-natural grassland (Bugac station, Central Hungary, CarboEurope IP, NitroEurope IP level 3 site). Dry deposition of N compounds has been determined by the inferential method, based on continuous monitoring of NO2 gas and daily 24-hour concentration measurements of HNO3 vapour, NH3 gas, and NH4+ and NO3, particles, using dry deposition velocities from the literature, measured above surfaces with the same characteristics as Bugac station. The bi-directional flux of NH3 within the atmosphere and the canopy (excluding soil emission) has also been estimated by the inferential method. Wet deposition of nitrate and ammonium ions was calculated on the basis of daily precipitation sampling and concentration measurements of nitrate and ammonium ions. To estimate the soil-atmosphere exchange of different gaseous N forms (N2, NO, N2O, NH3), the DNDC model was used as validated by the chamber measurements of NO and N2O soil emission fluxes. Soil emissions of NO and N2O have been determined by dynamic and static soil chamber methods, respectively. The measurement and modelling activity covers a complete year. Using the measured and modelled data, the calculated N balance at Bugac station between August 2006 and July 2007 is estimated at ,8.8 kg N ha,1 year,1 (deposition) as a sum of the deposition and emission terms (,10.4 and 1.6 kg N ha,1 year,1, respectively). Due to the warm and dry weather during the examined period, wet fluxes were substantially lower than usual, which may also have altered the regular yearly course of dry deposition and emission. [source]


A gene repertoire for nitrogen transporters in Laccaria bicolor

NEW PHYTOLOGIST, Issue 2 2008
Eva Lucic
Summary ,,Ectomycorrhizal interactions established between the root systems of terrestrial plants and hyphae from soil-borne fungi are the most ecologically widespread plant symbioses. The efficient uptake of a broad range of nitrogen (N) compounds by the fungal symbiont and their further transfer to the host plant is a major feature of this symbiosis. Nevertheless, we far from understand which N form is preferentially transferred and what are the key molecular determinants required for this transfer. ,,Exhaustive in silico analysis of N-compound transporter families were performed within the genome of the ectomycorrhizal model fungus Laccaria bicolor. A broad phylogenetic approach was undertaken for all families and gene regulation was investigated using whole-genome expression arrays. ,,A repertoire of proteins involved in the transport of N compounds in L. bicolor was established that revealed the presence of at least 128 gene models in the genome of L. bicolor. Phylogenetic comparisons with other basidiomycete genomes highlighted the remarkable expansion of some families. Whole-genome expression arrays indicate that 92% of these gene models showed detectable transcript levels. ,,This work represents a major advance in the establishment of a transportome blueprint at a symbiotic interface, which will guide future experiments. [source]


Nitrogen and phosphorus availability limit N2 fixation in bean

NEW PHYTOLOGIST, Issue 2 2000
E. O. LEIDI
Availability of nitrogen (N) and phosphorus (P) might significantly affect N2 fixation in legumes. The interaction of N and P was studied in common bean (Phaseolus vulgaris), considering their effects on nodulation and N2 fixation, nitrate reductase activity, and the composition of N compounds in xylem sap. The effect of N on the uptake of P by plants was estimated by analysing rhizospheric pH and P concentration in xylem sap and in plant shoots. Inoculated bean plants were grown in pots containing perlite/vermiculite in two experiments with different amounts of P and N. In a third experiment, bean plants were grown on two soil types or on river sand supplied with different concentrations of N. At harvest, shoot growth, number of nodules and mass, and nitrogenase activity were determined. Xylem sap was collected for the determination of ureides, amino acids, nitrate and phosphate concentration. At low nitrate concentration (1 mM), increasing amounts of P promoted both nodule formation and N2 fixation, measured as ureide content in the xylem sap. However, at high nitrate concentration (10 mM), nodulation and N2 fixation did not improve with increased P supply. Glutamine and aspartate were the main organic N compounds transported in the xylem sap of plants grown in low nitrate, whereas asparagine was the dominant N compound in xylem sap from plants grown in high nitrate. Nitrate reductase activity in roots was higher than in shoots of plants grown with low P and high N. In both soils and in the sand experiment, increased application of N decreased nodule mass and number, nitrogenase activity and xylem ureides but increased the concentration of asparagine in xylem sap. Increasing P nutrition improved symbiotic N2 fixation in bean only at low N concentrations. It did not alleviate the inhibitory effect of high nitrate concentration on N2 fixation. A decrease in plant P uptake was observed, as indicated by a lower concentration of P in the xylem sap and shoots, correlating with the amount of N supplied. Simultaneously with the specific inhibition of N2 fixation, high nitrate concentrations might decrease P availability, thus inhibiting even further the symbiotic association because of the high P requirement for nodulation and N2 fixation. [source]