Myosin II Inhibitor (myosin + ii_inhibitor)

Distribution by Scientific Domains


Selected Abstracts


In Vitro and In Vivo Relaxation of Corpus Cavernosum Smooth Muscle by the Selective Myosin II Inhibitor, Blebbistatin

THE JOURNAL OF SEXUAL MEDICINE, Issue 10 2009
Xin-hua Zhang MD
ABSTRACT Introduction., Blebbistatin (BLEB) is a small cell permeable molecule originally reported as a selective inhibitor of myosin II isoforms expressed by striated muscle and non-muscle cells (IC50 = 0.5,5 µM) with poor inhibition of turkey gizzard smooth muscle (SM) myosin II (IC50,80 µM). However, recently it was found that BLEB can potently inhibit mammalian arterial SM (IC50,5 µM). Aim., To investigate the effect of BLEB on corpus cavernosum SM (CCSM) tone and erectile function (EF). Methods., CC tissue obtained from penile implant patients along with CC, aorta and bladder from adult male rats were used for BLEB organ bath studies. Intracavernosal BLEB was administered to rats and EF was assessed via intracavernous pressure (ICP). Main Outcome Measures., Effects of BLEB on agonist-induced CCSM, aorta and bladder contraction in vitro and ICP in vivo. Results., BLEB completely relaxed human CCSM pre-contracted with phenylephrine (PE) in a dose-dependent manner decreasing tension by 76.5% at 10 µM. BLEB pre-incubation attenuated PE-induced contraction of human CC by ,85%. Human CC strips pre-contracted with endothelin-1 or KCl were almost completely relaxed by BLEB. Rat CCSM pre-contracted with PE showed BLEB relaxation comparable to human CCSM. BLEB inhibition was similar for rat aorta but slower for bladder. Both maximal ICP and ICP/mean arterial pressure were dose-dependently increased by BLEB intracavernous injections with full erection at 1 micromole. Conclusion., Our novel data reveals that BLEB nearly completely relaxes rat and human CCSM pre-contracted with a variety of potent agonists and exhibits tissue selectivity. Coupled with our in vivo data in which nanomole doses of BLEB significantly increase ICP, our data substantiates an important role for the SM contractile apparatus in the molecular mechanism for EF and suggests the possibility of BLEB binding at myosin II as a therapeutic treatment for ED by targeting SM contractile pathways. Zhang X, Aydin M, Kuppam D, Melman A, and DiSanto ME. In vitro and in vivo relaxation of corpus cavernosum smooth muscle by the selective myosin II inhibitor, blebbistatin. J Sex Med 2009;6:2661,2671. [source]


Myosin IIA is required for neurite outgrowth inhibition produced by repulsive guidance molecule

JOURNAL OF NEUROCHEMISTRY, Issue 1 2008
Takekazu Kubo
Abstract Although myelin-associated neurite outgrowth inhibitors express their effects through RhoA/Rho-kinase, the downstream targets of Rho-kinase remain unknown. We examined the involvement of myosin II, which is one of the downstream targets of Rho-kinase, by using blebbistatin , a specific myosin II inhibitor , and small interfering RNA targeting two myosin II isoforms, namely, MIIA and MIIB. We found that neurite outgrowth inhibition by repulsive guidance molecule (RGMa) was mediated via myosin II, particularly MIIA, in cerebellar granule neurons. RGMa induced myosin light chain (MLC) phosphorylation by a Rho-kinase-dependent mechanism. After spinal cord injury in rats, phosphorylated MLC in axons around the lesion site was up-regulated, and this effect depends on Rho-kinase activity. Further, RGMa-induced F-actin reduction in growth cones and growth cone collapse were mediated by MIIA. We conclude that Rho-kinase-dependent activation of MIIA via MLC phosphorylation induces F-actin reduction and growth cone collapse and the subsequent neurite retraction/outgrowth inhibition triggered by RGMa. [source]


In Vitro and In Vivo Relaxation of Corpus Cavernosum Smooth Muscle by the Selective Myosin II Inhibitor, Blebbistatin

THE JOURNAL OF SEXUAL MEDICINE, Issue 10 2009
Xin-hua Zhang MD
ABSTRACT Introduction., Blebbistatin (BLEB) is a small cell permeable molecule originally reported as a selective inhibitor of myosin II isoforms expressed by striated muscle and non-muscle cells (IC50 = 0.5,5 µM) with poor inhibition of turkey gizzard smooth muscle (SM) myosin II (IC50,80 µM). However, recently it was found that BLEB can potently inhibit mammalian arterial SM (IC50,5 µM). Aim., To investigate the effect of BLEB on corpus cavernosum SM (CCSM) tone and erectile function (EF). Methods., CC tissue obtained from penile implant patients along with CC, aorta and bladder from adult male rats were used for BLEB organ bath studies. Intracavernosal BLEB was administered to rats and EF was assessed via intracavernous pressure (ICP). Main Outcome Measures., Effects of BLEB on agonist-induced CCSM, aorta and bladder contraction in vitro and ICP in vivo. Results., BLEB completely relaxed human CCSM pre-contracted with phenylephrine (PE) in a dose-dependent manner decreasing tension by 76.5% at 10 µM. BLEB pre-incubation attenuated PE-induced contraction of human CC by ,85%. Human CC strips pre-contracted with endothelin-1 or KCl were almost completely relaxed by BLEB. Rat CCSM pre-contracted with PE showed BLEB relaxation comparable to human CCSM. BLEB inhibition was similar for rat aorta but slower for bladder. Both maximal ICP and ICP/mean arterial pressure were dose-dependently increased by BLEB intracavernous injections with full erection at 1 micromole. Conclusion., Our novel data reveals that BLEB nearly completely relaxes rat and human CCSM pre-contracted with a variety of potent agonists and exhibits tissue selectivity. Coupled with our in vivo data in which nanomole doses of BLEB significantly increase ICP, our data substantiates an important role for the SM contractile apparatus in the molecular mechanism for EF and suggests the possibility of BLEB binding at myosin II as a therapeutic treatment for ED by targeting SM contractile pathways. Zhang X, Aydin M, Kuppam D, Melman A, and DiSanto ME. In vitro and in vivo relaxation of corpus cavernosum smooth muscle by the selective myosin II inhibitor, blebbistatin. J Sex Med 2009;6:2661,2671. [source]


Myosin-II negatively regulates minor process extension and the temporal development of neuronal polarity

DEVELOPMENTAL NEUROBIOLOGY, Issue 5 2009
K.M. Kollins
Abstract The earliest stage in the development of neuronal polarity is characterized by extension of undifferentiated "minor processes" (MPs), which subsequently differentiate into the axon and dendrites. We investigated the role of the myosin II motor protein in MP extension using forebrain and hippocampal neuron cultures. Chronic treatment of neurons with the myosin II ATPase inhibitor blebbistatin increased MP length, which was also seen in myosin IIB knockouts. Through live-cell imaging, we demonstrate that myosin II inhibition triggers rapid minor process extension to a maximum length range. Myosin II activity is determined by phosphorylation of its regulatory light chains (rMLC) and mediated by myosin light chain kinase (MLCK) or RhoA-kinase (ROCK). Pharmacological inhibition of MLCK or ROCK increased MP length moderately, with combined inhibition of these kinases resulting in an additive increase in MP length similar to the effect of direct inhibition of myosin II. Selective inhibition of RhoA signaling upstream of ROCK, with cell-permeable C3 transferase, increased both the length and number of MPs. To determine whether myosin II affected development of neuronal polarity, MP differentiation was examined in cultures treated with direct or indirect myosin II inhibitors. Significantly, inhibition of myosin II, MLCK, or ROCK accelerated the development of neuronal polarity. Increased myosin II activity, through constitutively active MLCK or RhoA, decreased both the length and number of MPs and, consequently, delayed or abolished the development of neuronal polarity. Together, these data indicate that myosin II negatively regulates MP extension, and the developmental time course for axonogenesis. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source]