Myenteric Ganglia (myenteric + ganglion)

Distribution by Scientific Domains


Selected Abstracts


Ultrastructural Features of Myenteric Ganglia of Adult Wistar Rats (Rattus norvegicus)

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 6 2000
M. R. M. Natali
Summary The ultrastructural features of the ganglia of the myenteric plexus exhibit changes according to the animal species. These myenteric ganglia in the duodenum of adult rats of the Wistar strain were characterized ultrastructurally in this work. Those ganglia were depicted as compact structures, composed of neurones and glial cells, forming a dense neuropil surrounded by a continuous basal lamina and collagen fibrils. Glial cell bodies were smaller and apparently more frequent than neuronal cell bodies, being morphologically distinguished by nuclear features. In the neuronal extensions granular and agranular synaptic vesicles of different sizes predominate, in addition to mitochondria and myelinized profiles. Gliofilaments were not observed on the glial extensions of the rats. [source]


Haem oxygenase in enteric nervous system of human stomach and jejunum and co-localization with nitric oxide synthase

NEUROGASTROENTEROLOGY & MOTILITY, Issue 2 2001
S. M. Miller
Recent evidence suggests that carbon monoxide (CO) may be a neurotransmitter, similar to nitric oxide (NO) in the enteric nervous system. The distribution of haem oxygenase (HO), the biosynthetic enzyme for CO, has been determined in the enteric nervous system of animals, but little is known about the distribution of HO in human gastrointestinal tract. The present study investigated the expression of HO and its colocalization with NO synthase (NOS), the biosynthetic enzyme for NO, in human antrum and jejunum. HO isoforms were identified using immunohistochemistry and NOS was identified by immunohistochemistry or NADPH-d histochemistry. HO-2 immunoreactive (IR) cell bodies in enteric ganglia and nerve fibres in longitudinal and circular muscle were found in both antrum and jejunum. Co-localization of HO-2 and NOS was about 40% in HO-2 containing cell bodies of myenteric ganglia and only 10% or less in cell bodies of submucous ganglia. HO-1 immunoreactivity was not detected in antrum or jejunum. The results suggest that CO is produced in human enteric ganglion neurones and indicate a possible role of CO as a neurotransmitter and possible interaction between HO and NOS pathways in inhibitory neurotransmission in the human gastrointestinal tract. [source]


Neurochemical characterization of extrinsic innervation of the guinea pig rectum

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2004
Catharina Olsson
Abstract The presence of markers for parasympathetic, sympathetic, and glutamatergic or peptidergic sensory innervation was investigated by using in vitro tracing with biotinamide, combined with immunohistochemistry, to characterise quantitatively extrinsic axons to myenteric ganglia of the guinea pig rectum. Of biotinamide-filled varicose axons, 3.6 ± 1.3% were immunoreactive for tyrosine hydroxylase (TH) and 16.0 ± 4.8% for vesicular acetylcholine transporter (VAChT). TH and vesicular monoamine transporter (VMAT1) showed high coexistence (83,100%), indicating that varicosities lacking TH immunoreactivity also lacked VMAT1. VAChT was detectable in 77% of choline acetyltransferase (ChAT)-immunoreactive varicosities. Calcitonin gene-related peptide (CGRP) was detected in 5.3 ± 1.6% of biotinamide-labeled varicosities, the vesicular glutamate transporter (VGluT) 1 in 2.8 ± 0.8%, and VGluT2 in 11.3 ± 4.2% of varicosities of extrinsic origin. Varicosities from the same axon showed consistent immunoreactivity. A novel type of nerve ending was identified, with branching, flattened lamellar endings, similar to the intraganglionic laminar endings (IGLEs) of the proximal gut. Rectal IGLEs were frequently immunoreactive for VGluT1 and VGluT2. Thus most varicose axons of extrinsic origin, which innervate rectal myenteric ganglia, lack detectable levels of immunoreactivity for TH, VMAT1, VAChT, ChAT, VGluT1/2, or CGRP, under conditions in which these markers are readily detectable in other axons. Although some unlabeled varicosities may belong to afferent axons that lack detectable CGRP or VGluT1/2 in the periphery, this suggests that a large proportion of axons do not release any of the major autonomic or sensory transmitters. We speculate that this may vary under particular circumstances, for example, inflammation or obstruction of the gut. J. Comp. Neurol. 470:357,371, 2004. © 2004 Wiley-Liss, Inc. [source]


Ultrastructural Features of Myenteric Ganglia of Adult Wistar Rats (Rattus norvegicus)

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 6 2000
M. R. M. Natali
Summary The ultrastructural features of the ganglia of the myenteric plexus exhibit changes according to the animal species. These myenteric ganglia in the duodenum of adult rats of the Wistar strain were characterized ultrastructurally in this work. Those ganglia were depicted as compact structures, composed of neurones and glial cells, forming a dense neuropil surrounded by a continuous basal lamina and collagen fibrils. Glial cell bodies were smaller and apparently more frequent than neuronal cell bodies, being morphologically distinguished by nuclear features. In the neuronal extensions granular and agranular synaptic vesicles of different sizes predominate, in addition to mitochondria and myelinized profiles. Gliofilaments were not observed on the glial extensions of the rats. [source]


Role of NK1 and NK2 receptors in mouse gastric mechanical activity

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2006
Flavia Mulè
The aim of the present study was to examine the role of NK1 and NK2 receptors in the control of mechanical activity of mouse stomach. In this view, the motor effects induced by NK1 and NK2 receptor agonists and antagonists were analyzed, measuring motility as intraluminal pressure changes in mouse-isolated stomach preparations. In parallel, immunohistochemical studies were performed to identify the location of NK1 and NK2 receptors on myenteric neurons and smooth muscle cells. Substance P (SP) induced biphasic effects: a contraction followed by relaxation; neurokinin A (NKA) and [, -Ala8]-NKA(4,10), selective agonist of NK2 receptors, evoked concentration-dependent contractions, whereas [Sar9, Met(O2)11]-SP, selective agonist of NK1 receptors, induced concentration-dependent relaxation. SR48968, NK2 receptor antagonist, did not modify the spontaneous activity and reduced the contractile effects induced by tachykinins without affecting the relaxation. SR140333, NK1 receptor antagonist, did not modify the spontaneous activity and antagonized the relaxant response to tachykinins, failing to affect the contractile effects. The relaxation to SP or to [Sar9, Met(O2)11]-SP was abolished by tetrodotoxin (TTX) and significantly reduced by N -nitro- L -arginine methyl ester (L -NAME). NK2 -immunoreactivity (NK2 -IR) was seen at the level of the smooth muscle cells of both circular and longitudinal muscle layers. NK1 -immunoreactive (NK1 -IR) neurons were seen in the myenteric ganglia and NK1/nNOS double labeling revealed that some neurons were both NK1 -IR and nNOS-IR. These results suggest that, in mouse stomach, NK1 receptors, causing relaxant responses, are present on nitrergic inhibitory myenteric neurons, whereas NK2 receptors, mediating contractile responses, are present at muscular level. British Journal of Pharmacology (2006) 147, 430,436. doi:10.1038/sj.bjp.0706645 [source]