Myeloid Leukaemia Cells (myeloid + leukaemia_cell)

Distribution by Scientific Domains


Selected Abstracts


Antibacterial, antiviral, antiproliferative and apoptosis-inducing properties of Brackenridgea zanguebarica (Ochnaceae)

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2006
Maren Möller
Brackenridgea zanguebarica is a small tree that is used in traditional African medicine as a type of cure-all for many diseases, including the treatment of wounds. The yellow bark of B. zanguebarica was used for the preparation of an ethanolic extract, which was tested in various concentrations against eleven bacteria, Herpes simplex virus type 1 (HSV-1) and different human tumour cell lines. The extract that contains different polyphenolic substances like calodenin B. Cell growth inhibition, assessed via MTT-assay, was found in all tested human cell lines with IC50 values (concentration of extract that reduced cell viability by 50%) between 33 ,g dry extract/mL for HL-60 human myeloid leukaemia cells and 93 ,g dry extract/mL for HaCaT human keratinocytes. Staining with Annexin-V-FLUOS and JC-1 followed by subsequent analysis via flow cytometry revealed significant apoptosis-inducing properties. Analysis of caspase activity using a fluorogenic caspase-3 substrate showed a significant caspase activity in Jurkat T-cells after incubation with the extract. The bark extract had a pronounced activity against free HSV-1 and a strong antibacterial activity against Gram-positive strains (MICs: 6,24 ,g dry extract/mL), which are often involved in skin infections. Additionally, no irritating properties of the extract could be observed in hen-egg test chorioallantoic membrane (HET-CAM) assay. These findings give a rationale for the traditional use of B. zanguebarica and are a basis for further analysis of the plant's components, their biological activity, and its use in modern phytotherapy. [source]


Rotundifuran, a labdane type diterpene from Vitex rotundifolia, induces apoptosis in human myeloid leukaemia cells

PHYTOTHERAPY RESEARCH, Issue 6 2001
W. G. Ko
Abstract The inhibitory effect of rotundifuran, a labdane type diterpene isolated from the fruit of Vitex rotundifolia, on the proliferation of human myeloid leukaemia HL-60 cells was examined. The concentration required for 50% inhibition of the growth after 96,h was 22.5,µM. The mode of cell death induced by rotundifuran was found to be apoptosis, which was judged by the morphological alteration of the cells and by the detection of DNA fragmentation using agarose gel electrophoresis. The degree of apoptosis was quantified by a sandwich enzyme immunoassay and flowcytometric analysis. These results suggest that rotundifuran may be used as a potential chemopreventive and chemotherapeutic agent. Copyright © 2001 John Wiley & Sons, Ltd. [source]


The NF (Nuclear factor)-,B inhibitor parthenolide interacts with histone deacetylase inhibitors to induce MKK7/JNK1-dependent apoptosis in human acute myeloid leukaemia cells

BRITISH JOURNAL OF HAEMATOLOGY, Issue 1 2010
Yun Dai
Summary Interactions between the nuclear factor (NF)-,B inhibitor parthenolide and the pan-histone deacetylase inhibitors (HDACIs) vorinostat and LBH589 were investigated in human acute myeloid leukaemia (AML) cells, including primary AML blasts. Co-administration of parthenolide blocked HDACI-mediated phosphorylation/activation of IKK and RelA/p65 in association with increased JNK1 activation in various AML cell types. These events were accompanied by an increase in apoptosis in multiple AML cell lines (e.g. U937, HL-60, NB4, MV-4-11, and MOLM-13). Significantly, parthenolide also increased HDACI-mediated cell death in haematopoietic cells transduced with the MLL - MLLT1 fusion gene, which exhibit certain leukaemia-initiating cell characteristics, as well as primary AML blasts. Exposure to parthenolide/HDACI regimens clearly inhibited the growth of AML-colony-forming units but was relatively sparing toward normal haematopoietic progenitors. Notably, blockade of c-Jun N-terminal kinase (JNK) signalling by either pharmacological inhibitors or genetic means (e.g. dominant-negative JNK1 or JNK1 shRNA) diminished parthenolide/HDACI-mediated lethality. Moreover, dominant-negative MKK7, but not dominant-negative MKK4/SEK1, blocked JNK1 activation and apoptosis induced by parthenolide/HDACI regimens. Together, these findings indicate that parthenolide potentiates HDACI lethality in human AML cells through a process involving NF-,B inhibition and subsequent MKK7-dependent activation of the SAPK/JNK pathway. They also raise the possibility that this strategy may target leukaemic progenitor cells. [source]


Epigallocatechin-3-gallate induces cell death in acute myeloid leukaemia cells and supports all- trans retinoic acid-induced neutrophil differentiation via death-associated protein kinase 2

BRITISH JOURNAL OF HAEMATOLOGY, Issue 1 2010
Adrian Britschgi
Summary Acute promyelocytic leukaemia (APL) patients are successfully treated with all- trans retinoic acid (ATRA). However, concurrent chemotherapy is still necessary and less toxic therapeutic approaches are needed. Earlier studies suggested that in haematopoietic neoplasms, the green tea polyphenol epigallocatechin-3-gallate (EGCG) induces cell death without adversely affecting healthy cells. We aimed at deciphering the molecular mechanism of EGCG-induced cell death in acute myeloid leukaemia (AML). A significant increase of death-associated protein kinase 2 (DAPK2) levels was found in AML cells upon EGCG treatment paralleled by increased cell death that was significantly reduced upon silencing of DAPK2. Moreover, combined ATRA and EGCG treatment resulted in cooperative DAPK2 induction and potentiated differentiation. EGCG toxicity of primary AML blasts correlated with 67 kDa laminin receptor (67LR) expression. Pretreatment of AML cells with ATRA, causing downregulation of 67LR, rendered these cells resistant to EGCG-mediated cell death. In summary, it was found that (i) DAPK2 is essential for EGCG-induced cell death in AML cells, (ii) ATRA and EGCG cotreatment significantly boosted neutrophil differentiation, and 67LR expression correlates with susceptibility of AML cells to EGCG. We thus suggest that EGCG, by selectively targeting leukaemic cells, may improve differentiation therapies for APL and chemotherapy for other AML subtypes. [source]


The protein kinase C agonist PEP005 increases NF-,B expression, induces differentiation and increases constitutive chemokine release by primary acute myeloid leukaemia cells

BRITISH JOURNAL OF HAEMATOLOGY, Issue 6 2009
Astrid Marta Olsnes
Summary Acute myeloid leukaemia (AML) cells show constitutive release of several chemokines that occurs in three major clusters: (I) chemokine (C-C motif) ligand (CCL)2,4/chemokine (C-X-C motif) ligand (CXCL)1/8, (II) CCL5/CXCL9,11 and (III) CCL13/17/22/24/CXCL5. Ingenol-3-angelate (PEP005) is an activator of protein kinase C and has antileukaemic and immunostimulatory effects in AML. We investigated primary AML cells derived from 35 unselected patients and determined that PEP005 caused a dose-dependent increase in the release of chemokines from clusters I and II, including several T cell chemotactic chemokines. The release of granulocyte-macrophage colony-stimulating factor and hepatocyte growth factor was also increased. CCL2,4/CXCL1/8 release correlated with nuclear factor (NF)-,B expression in untreated AML cells, and PEP005-induced chemokine production was associated with further increases in the expression of the NF-,B subunits p50, p52 and p65. Increased DNA binding of NF-,B was observed during exposure to PEP005, and the specific NF-,B inhibitor BMS-345541 reduced constitutive chemokine release even in the presence of PEP005. Finally, PEP005 decreased expression of stem cell markers (CD117, CXCR4) and increased lineage-associated CD11b and CD14 expression. To conclude, PEP005 has a unique functional pharmacological profile in human AML. Previous studies have described proapoptotic and T cell stimulatory effects and the present study describes additional T cell chemotactic and differentiation-inducing effects. [source]


The leukaemia-associated antigen, SSX2IP, is expressed during mitosis on the surface of myeloid leukaemia cells

BRITISH JOURNAL OF HAEMATOLOGY, Issue 5 2007
Frances A. K. Denniss
No abstract is available for this article. [source]


Retroviral transduction of acute myeloid leukaemia-derived dendritic cells with OX40 ligand augments their antigen presenting activity

BRITISH JOURNAL OF HAEMATOLOGY, Issue 4 2004
Soshi Yanagita
Summary Recent studies have shown that human myeloid leukaemia cells can differentiate into dendritic cell (DC)-like cells (leukaemia-DCs) when cultured with a combination of cytokines. In the present study, we examined whether the transduction of leukaemia-DCs with OX40 ligand (OX40L), a member of the tumour necrosis factor (TNF) family, resulted in augmentation of their antigen presenting activity. Bicistronic retroviral vectors expressing both human OX40L and enhanced green fluorescent protein (EGFP) or EGFP alone were generated and used for transduction. Fresh leukaemic cells from five patients with acute myeloid leukaemia (AML) were isolated and retrovirally transduced with OX40L during the culture with a combination of cytokines from stem cell factor, fms -like tyrosine kinase (Flt)-3 ligand, granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin-4 (IL-4) and TNF- ,. After 7 d, the majority of cells showed DC-like morphology, and expressed higher levels of CD80, CD86 and HLA-DR than fresh leukaemic cells. The transduction efficiency was 8·5,27·2%. Leukaemia-DCs transduced with OX40L elicited higher proliferative response of allogeneic CD4+ T cells than fresh leukaemic cells, non-transduced, or mock-transduced leukaemia-DCs. Co-culture of allogeneic CD4+ T cells with OX40L-transduced leukaemia-DCs was superior in the generation of interferon (IFN)- , producing CD4+ T cells and in production of IFN- ,. Furthermore, OX40L-transduced leukaemia-DCs could elicit significant proliferative response of human leucocyte antigen-matched T cells from the donor in allogeneic stem cell transplantation. These results indicate that retroviral transduction of leukaemia-DCs with OX40L augments their antigen presenting cell activity and thus renders them more suitable for tumour vaccines or ex vivo stimulation of leukaemia-specific T cells. [source]


CXCR4 chemokine receptors (CD184) and ,4,1 integrins mediate spontaneous migration of human CD34+ progenitors and acute myeloid leukaemia cells beneath marrow stromal cells (pseudoemperipolesis)

BRITISH JOURNAL OF HAEMATOLOGY, Issue 4 2003
Jan A. Burger
Summary. Marrow stromal cells play an important role in regulating the development and proliferation of haematopoietic stem cells (HSC) within the marrow microenvironment. However, the molecular mechanisms of stem cell,stromal cell interactions are not fully understood. We observed that mobilized peripheral blood and cord-blood-derived CD34+ progenitor cells, or CD34+ acute myeloid leukaemia (AML) cells spontaneously migrated beneath marrow stromal cells, an in vitro migration phenomenon termed pseudoemperipolesis. In contrast, the CD34+ myeloid leukaemia cell line, Kasumi-1, did not display pseudoemperipolesis. Cord blood CD34+ cells had a higher capacity than granulocyte-colony-stimulating-factor-mobilized CD34+ cells for pseudoemperipolesis (28·7 ± 12%vs 18·1 ± 6·1% of input cells within 24 h, mean ± SD, n = 8), whereas 9·4 ± 12·6% (mean ± SD, n = 10) of input AML cells displayed this phenomenon. Pseudoemperipolesis of CD34+ progenitor and AML cells was significantly inhibited by pertussis toxin and antibodies to the CXCR4 chemokine receptor (CXCR4, CD184), but not control antibodies. Moreover, CD34+ and AML cell migration was significantly inhibited by a CS1 peptide that blocks ,4,1 integrin binding, but not by a control peptide, in which the fibronectin binding motif was scrambled. Pseudoemperipolesis was associated with an increased proliferation of migrated CD34+ progenitor cells but not AML cells within the stromal layer, demonstrated by cell cycle analysis and cell division tracking. We conclude that ,4,1 integrin binding and CXCR4 chemokine receptor activation are prerequisites for the migration of CD34+ haematopoietic progenitors and AML cells beneath marrow stromal cells. These observations suggest a central role of marrow stromal cells for HSC trafficking and homing within the marrow microenvironment. [source]