Myelin Loss (myelin + loss)

Distribution by Scientific Domains


Selected Abstracts


Decreasing myelin density reflected increasing white matter pathology in Alzheimer's disease,a neuropathological study

INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, Issue 10 2005
Martin Sjöbeck
Abstract Background White matter disease (WMD) is frequently seen in Alzheimer's disease (AD) at neuropathological examination. It is defined as a subtotal tissue loss with a reduction of myelin, axons and oligodendrocytes as well as astrocytosis. Studies quantitatively defining the myelin loss in AD are scarce. The aim was to develop a method that could provide numerical values of myelin density in AD. The purpose was to compare the myelin contents in increasing grades of pathology of WMD, with age and cortical AD pathology as well as in different regions of the brain in AD. Material and methods Sixteen cases with AD and concomitant WMD were investigated with an in-house developed image analysis technique to determine the myelin attenuation with optical density (OD) in frontoparietal, parietal, temporal and occipital white matter on whole brain coronal sections stained for myelin with Luxol Fast Blue (LFB). The OD values in LFB were compared grouped according to Haematoxylin/Eosin (HE) evaluated mild, moderate and severe WMD or normal tissue. The OD values were also correlated with age and cortical AD pathology and compared between the different studied white matter regions. Results Increasing severity of WMD was associated with a statistically significant OD reduction. No correlation was seen between age and OD or overall cortical AD pathology. The OD values were significantly lower in frontoparietal-compared to occipital white matter. Conclusions Myelin loss in AD with WMD is a marked morphologic component of the disease and it is possible to determine the reduction objectively in neuropathological specimens with quantitative measures. This may be of use for clinical diagnostics including brain imaging. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats

JOURNAL OF NEUROCHEMISTRY, Issue 6 2009
Dai-Shi Tian
Abstract Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced pathology. Blood,spinal cord barrier (BSCB) permeability, tissue edema formation, microglial activation, neuronal cell death and myelin loss were determined in rats subjected to spinal cord contusion. The results showed that tamoxifen, administered at 30 min post-injury, significantly decreased interleukin-1, (IL-1,) production induced by microglial activation, alleviated the amount of Evans blue leakage and edema formation. In addition, tamoxifen treatment clearly reduced the number of apoptotic neurons post-SCI. The myelin loss and the increase in production of myelin-associated axonal growth inhibitors were also found to be significantly attenuated at day 3 post-injury. Furthermore, rats treated with tamoxifen scored much higher on the locomotor rating scale after SCI than did vehicle-treated rats, suggesting improved functional outcome after SCI. Together, these results demonstrate that tamoxifen provides neuroprotective effects for treatment of SCI-related pathology and disability, and is therefore a potential neuroprotectant for human spinal cord injury therapy. [source]


Pathogenesis of Brain and Spinal Cord Atrophy in Multiple Sclerosis

JOURNAL OF NEUROIMAGING, Issue 2004
Alireza Minagar MD
ABSTRACT For more than a century, multiple sclerosis was viewed as a disease process characterized by oligodendrocyte and myelin loss, and research into the pathogenesis of multiple sclerosis was mainly focused on the mechanisms of inflammation. However, with development of more sophisticated neuroimaging and molecular biology techniques, attention has shifted to new aspects of pathogenesis of multiple sclerosis: axonal loss and neurodegeneration. Evidence is increasing that tissue destruction, primarily axonal loss and neurodegeneration, is a key element in the pathogenesis of multiple sclerosis. In addition, it is now known that brain and spinal cord atrophy begins early in the disease process of multiple sclerosis and advances relentlessly throughout the course of the disease. Cumulative data suggest that axonal loss is the major determinant of progressive neuro logic disability in patients with multiple sclerosis. Magnetic resonance imaging and magnetic resonance spectroscopy in patients with multiple sclerosis for < 5 years indicate brain atrophy and loss of axonal integrity. Neurodegeneration and axonal loss in patients with multiple sclerosis are initially accompanied by a local response from oligodendrocyte progenitor cells and some remyelination. However, these repair mechanisms eventually fail, and patients typically develop generalized brain atrophy, cognitive decline, and permanent disability. Although the exact mechanisms underlying central nervous system atrophy in patients with multiple sclerosis are largely unknown, evidence exists that atrophy may represent an epiphenomenon related to the effects of dynamic inflammation within the central nervous system, including demyelination, axonal injury, neuronal loss, Wallerian degeneration, and possibly iron deposition. This article summarizes the potential mechanisms involved in central nervous system atrophy in patients with multiple sclerosis. [source]


Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2010
Eric A. Sribnick
Abstract Spinal cord injury (SCI) causes loss of neurological function and, depending on serverity, may cause paralysis. The only recommended pharmacotherapy for the treatment of SCI is high-dose methylprednisolone, and its use is controversial. We have previously shown that estrogen treatment attenuated cell death, axonal and myelin damage, calpain and caspase activities, and inflammation in acute SCI. The aim of this study was to examine whether posttreatment of SCI with estrogen would improve locomotor function by protecting cells and axons and reducing inflammation during the chronic phase following injury. Moderately severe injury (40 g · cm force) was induced in male Sprague-Dawley rats following laminectomy at T10. Three groups of animals were used: sham (laminectomy only), vehicle (dimethyl sulfoxide; DMSO)-treated injury group, and estrogen-treated injury group. Animals were treated with 4 mg/kg estrogen at 15 min and 24 hr postnjury, followed by 2 mg/kg estrogen daily for the next 5 days. After treatment, animals were sacrificed at the end of 6 weeks following injury, and 1-cm segments of spinal cord (lesion, rostral to lesion, and caudal to lesion) were removed for biochemical analyses. Estrogen treatment reduced COX-2 activity, blocked nuclear factor-,B translocation, prevented glial reactivity, attenuated neuron death, inhibited activation and activity of calpain and caspase-3, decreased axonal damage, reduced myelin loss in the lesion and penumbra, and improved locomotor function compared with vehicle-treated animals. These findings suggest that estrogen may be useful as a promising therapeutic agent for prevention of damage and improvement of locomotor function in chronic SCI. © 2010 Wiley-Liss, Inc. [source]


Astrocytic hypertrophy in dysmyelination influences the diffusion anisotropy of white matter

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2007
Laura A. Harsan
Abstract The effect of a proteolipid protein (PLP) mutation on the developing white matter anisotropy was examined by diffusion tensor magnetic resonance imaging (DT-MRI) in a noninvasive study of a mouse model of Pelizaeus-Merzbacher disease (PMD). The jimpy PLP mutation in mice produces an irreversible dysmyelination in jimpy males, whereas heterozygous females exhibit a transient hypomyelination, as assessed by a longitudinal study of the same mice during development. Modifications of the different individual DT-MRI parameters were highlighted by specific changes in tissue structures caused by the mutation that includes the hypomyelination, axonal abnormalities, and recovery. Astrocytic hypertrophy is a striking cellular event in dysmyelinated jimpy brain, where most axons or bundles of fibers are entirely wrapped by astrocyte cytoplasmic processes, so its influences on DT-MRI parameters in dysmyelination were examined for the first time. DT-MRI data of the jimpy brain were compared with those obtained from dysmyelination of (oligo-TTK) transgenic mice, induced by oligodendrocyte killing, which have a mild astrocyte hypertrophy (Jalabi et al., 2005), and from recovering jimpy females, which have reduced astrocyte hypertrophy. The unique morphological feature of astrocytes in jimpy males coupled with an increase in the water channel protein aquaporin 4 (AQP4) was found to facilitate the directional water diffusion in the white matter. In addition to the major changes of DT-MRI parameters in the two dysmyelinated mice caused by the myelin loss and axonal modifications, the amplified magnitude of radial and axial diffusions in jimpy males was attributed principally to the strongly pronounced astrocyte hypertrophy. © 2007 Wiley-Liss, Inc. [source]


Estrogen attenuated markers of inflammation and decreased lesion volume in acute spinal cord injury in rats

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2005
Eric Anthony Sribnick
Abstract Spinal cord injury (SCI) is a devastating neurologic injury with functional deficits for which the only currently recommended pharmacotherapy is high-dose methylprednisolone, which has limited efficacy. Estrogen is a multiactive steroid that has shown antiinflammatory and antioxidant effects, and estrogen may modulate intracellular Ca2+ and attenuate apoptosis. For this study, male rats were divided into three groups. Sham group animals received a laminectomy at T12. Injured rats received both laminectomy and 40 g · cm force SCI. Estrogen-group rats received 4 mg/kg 17,-estradiol (estrogen) at 15 min and 24 hr post-injury, and vehicle-group rats received equal volumes of dimethyl sulfoxide (vehicle). Animals were sacrificed at 48 hr post-injury, and 1-cm-long segments of the lesion, rostral penumbra, and caudal penumbra were excised. Inflammation was assessed by examining tissue edema, infiltration of macrophages/microglia, and levels of cytosolic and nuclear NF,B and inhibitor of kappa B (I,B,). Myelin integrity was examined using Luxol fast blue staining. When compared to sham, vehicle-treated animals revealed increased tissue edema, increased infiltration of inflammatory cells, decreased cytosolic levels of NF,B and I,B,, increased levels of nuclear NF,B, and increased myelin loss. Treatment of SCI rats with estrogen reduced edema and decreased inflammation and myelin loss in the lesion and penumbral areas, suggesting its potential as a therapeutic agent. Further work needs to be done, however, to elucidate the neuroprotective mechanism of estrogen. © 2005 Wiley-Liss, Inc. [source]


Magnetic resonance imaging as a tool to examine the neuropathology of multiple sclerosis

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 2 2004
L. Bö
Magnetic resonance imaging (MRI) has significantly extended the understanding of multiple sclerosis (MS), owing to its ability to sensitively depict the dynamics of the disease process in vivo. The subject of this review is the use of MRI in the post-mortem setting, with emphasis on how it may be used to improve the specimen selection process at autopsy. Lesions with active demyelination are highly interesting in the study of MS pathogenesis, but are rare in a typical autopsy material of chronic MS. The yield of MS lesions in autopsy specimen selection can be increased by the use of MRI-guided tissue sampling, as a significant proportion of abnormalities detected by post-mortem MRI are not macroscopically visible/palpable. The majority of these MRI abnormalities have been found to represent either discrete areas of microglial activation with no demyelination (so-called (p)reactive lesions), or active demyelinating MS lesions by further histopathological examination. The presence and extent of MS pathology outside of the focal demyelinated lesions is more readily appreciated by MRI-guided specimen sampling, as has been shown in the study of extensive areas of partial myelin loss in the spinal cord. A further advantage of MRI-guided specimen sampling is the ability to use three-dimensional and quantitative measures. The potential of correlating these with histopathological data may be further exploited in the future. The technical procedure for MRI-guided tissue sampling at autopsy is presented, and the limitations of the technique are discussed. [source]


Axonal Pathology and Loss Precede Demyelination and Accompany Chronic Lesions in a Spontaneously Occurring Animal Model of Multiple Sclerosis

BRAIN PATHOLOGY, Issue 3 2010
Frauke Seehusen
Abstract Axonal damage has been highlighted recently as a cause of neurological disability in various demyelinating diseases, including multiple sclerosis, either as a primary pathological change or secondary due to myelin loss. To characterize and quantify axonal damage and loss in canine distemper demyelinating leukoencephalomyelitis (DL), formalin-fixed paraffin-embedded cerebella were investigated histochemically and immunohistochemically using the modified Bielschowsky's silver stain as well as antibodies against nonphosphorylated (n-NF), phosphorylated neurofilament (p-NF) and ,-amyloid precursor protein (,-APP). Injured axons characterized by immunoreactivity against n-NF and ,-APP were detected in early distemper lesions without demyelination. In subacute and chronic demyelinating lesions the number of injured axons increased. Moreover, a significant decrease in axonal density was observed within lesions and in the normal appearing white matter in DL as determined by morphometric analyses using Bielschowsky's silver stain and p-NF immunohistochemistry. Summarized, the observed findings indicate that axonal damage (i) occurs early in DL; (ii) can be detected before myelin loss; and (iii) represents a pivotal feature in advanced lesions. It must be postulated that axonal damage plays an important role in the initial phase as a primary event and during progression of nervous distemper as a result of demyelination. [source]