Myelin Content (myelin + content)

Distribution by Scientific Domains


Selected Abstracts


Insulin-like growth factor-I ameliorates demyelination induced by tumor necrosis factor-, in transgenic mice

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2007
Ping Ye
Abstract Our groups have reported that tumor necrosis factor-, (TNF-,) causes myelin damage and apoptosis of oligodendrocytes and their precursors in vitro and in vivo. We also have reported that insulin-like growth factor-I (IGF-I) can protect cultured oligodendrocytes and their precursors from TNF-,-induced damage. In this study, we investigated whether IGF-I can protect oligodendrocytes and myelination from TNF-,-induced damage in vivo by cross-breeding TNF-, transgenic (Tg) mice with IGF-I Tg mice that overexpress IGF-I exclusively in brain. At 8 weeks of age, compared with those of wild-type (WT) mice, the brain weights of TNF-, Tg mice were decreased by ,20%, and those of IGF-I Tg mice were increased by ,20%. The brain weights of mice that carry both TNF-, and IGF-I transgenes (TNF-,/IGF-I Tg mice) did not differ from those of WT mice. As judged by histochemical staining and immunostaining, myelin content in the cerebellum of TNF-,/IGF-I Tg mice was similar to that in WT mice and much more than that in TNF-, Tg mice. Consistently, Western immunoblot analysis showed that myelin basic protein (MBP) abundance in the cerebellum of TNF-,/IGF-I Tg mice was double that in TNF-, Tg mice. In comparison with WT mice, the number of oligodendrocytes was decreased by ,36% in TNF-, Tg mice, whereas it was increased in IGF-I Tg mice by ,40%. Oligodendrocyte number in TNF-,/IGF-I Tg mice was almost twice that in TNF-, Tg mice. Furthermore, IGF-I overexpression significantly reduced TNF-,-induced increases in apoptotic cell number, active caspase-3 abundance, and degradaion of MBP. Our results indicate that IGF-I is capable of protecting myelin and oligodendrocytes from TNF-,-induced damage in vivo. © 2007 Wiley-Liss, Inc. [source]


MYELINATION DEFICIT IN NERVE OF SUCKLING RATS DUE TO CYCLOLEUCINE -INDUCED DEFICIENCY OF METHYL DONORS

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2000
R. Bianchi
We used cycloleucine (CL) , which prevents methionine conversion to S-adenosyl-methionine (SAMe) by inhibiting ATP-L-methionine-adenosyl-transferase (MAT) , to characterize the lipid and protein changes induced by methyl donors deficit in peripheral nerve and brain myelin in rats during development. We have previously shown that CL (400 mg/kg ip) given to suckling rats at days 7, 8, 12, and 13 after birth reduced brain and sciatic nerve weight gain, brain myelin content, protein, phospholipid (PL), and galactolipid concentration in comparison to control. Among PLs, only sphingomyelin (SPH) significantly increased by 35,50%. SAMe p-toluensulphonate (SAMe-SD4) (100 mg/kg, ip) given daily from day 7, as with exogenous SAMe, partially prevented some lipid alterations induced by CL, particularly galactolipid and SPH. To test the ability of CL to affect PL metabolism we have measured de novo PL biosynthesis, ex vivo in nerve homogenates (in comparison with brain homogenates) from control and CL-treated animals killed at day 18 after birth, starting from labelled substrates ([3H]-choline, specific activity 20 mCi/mmol) in a Tris/HCl buffer, containing 5 mM MgCl2, 0.2 mM EDTA, 0.1 mM ATP, and 0.5 mM of the labelled substrates. After 60 min incubation, lipids were extracted, PL separated by TLC, and corresponding silica gel fractions scraped and counted in a liquid scintillator. Phosphatidylcholine enrichment in labelled choline resulted in slight increases in brain and sciatic nerve of CL-treated rats, suggesting an increased synthesis rate via the Kennedy pathway, possibly due to the reduced availability of methyl donors. Interestingly, choline incorporation into SPH in brain and nerve myelin resulted in significant increases of 30,40%. In agreement with the observed decrease of galactolipid content and the relative increase in SPH, these data suggest an alteration in sphingolipid metabolism after CL. Among proteins, in sciatic nerves of CL-treated pups the relative content of a number of polypeptides, namely the 116, 90, 66, 58, and 56 kDa bands, decreased, whereas others increased; the most abundant PNS protein, protein zero, remained unchanged. The analyses of myelin basic protein isoforms revealed a dramatic increase in the 14.0 and 18.5 forms, indicating early active myelination. SAMe-SD4 treatment counteracted, and in some cases normalized, these changes. In summary, methyl donor deficiency induced by MAT inhibition produces myelin lipid and protein alterations, partly counteracted by SAMe-SD4 administration. The financial support of Telethon-Italy (grant No. D 51) is gratefully acknowledged. [source]


Propagation of spreading depression inversely correlates with cortical myelin content,

ANNALS OF NEUROLOGY, Issue 3 2009
Doron Merkler MD
Objective Cortical myelin can be severely affected in patients with demyelinating disorders of the central nervous system. However, the functional implication of cortical demyelination remains elusive. In this study, we investigated whether cortical myelin influences cortical spreading depression (CSD). Methods CSD measurements were performed in rodent models of toxic and autoimmune induced cortical demyelination, in neuregulin-1 type I transgenic mice displaying cortical hypermyelination, and in glial fibrillary acidic protein,transgenic mice exhibiting pronounced astrogliosis. Results Cortical demyelination, but not astrogliosis or inflammation per se, was associated with accelerated CSD. In contrast, hypermyelinated neuregulin-1 type I transgenic mice displayed a decelerated CSD propagation. Interpretation Cortical myelin may be crucially involved in the stabilization and buffering of extracellular ion content that is decisive for CSD propagation velocity and cortical excitability, respectively. Our data thus indicate that cortical involvement in human demyelinating diseases may lead to relevant alterations of cortical function. Ann Neurol 2009;66:355,365 [source]


Decreasing myelin density reflected increasing white matter pathology in Alzheimer's disease,a neuropathological study

INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, Issue 10 2005
Martin Sjöbeck
Abstract Background White matter disease (WMD) is frequently seen in Alzheimer's disease (AD) at neuropathological examination. It is defined as a subtotal tissue loss with a reduction of myelin, axons and oligodendrocytes as well as astrocytosis. Studies quantitatively defining the myelin loss in AD are scarce. The aim was to develop a method that could provide numerical values of myelin density in AD. The purpose was to compare the myelin contents in increasing grades of pathology of WMD, with age and cortical AD pathology as well as in different regions of the brain in AD. Material and methods Sixteen cases with AD and concomitant WMD were investigated with an in-house developed image analysis technique to determine the myelin attenuation with optical density (OD) in frontoparietal, parietal, temporal and occipital white matter on whole brain coronal sections stained for myelin with Luxol Fast Blue (LFB). The OD values in LFB were compared grouped according to Haematoxylin/Eosin (HE) evaluated mild, moderate and severe WMD or normal tissue. The OD values were also correlated with age and cortical AD pathology and compared between the different studied white matter regions. Results Increasing severity of WMD was associated with a statistically significant OD reduction. No correlation was seen between age and OD or overall cortical AD pathology. The OD values were significantly lower in frontoparietal-compared to occipital white matter. Conclusions Myelin loss in AD with WMD is a marked morphologic component of the disease and it is possible to determine the reduction objectively in neuropathological specimens with quantitative measures. This may be of use for clinical diagnostics including brain imaging. Copyright © 2005 John Wiley & Sons, Ltd. [source]