Myelin

Distribution by Scientific Domains

Kinds of Myelin

  • compact myelin
  • nerve myelin
  • peripheral myelin
  • peripheral nerve myelin

  • Terms modified by Myelin

  • myelin abnormality
  • myelin basic protein
  • myelin content
  • myelin damage
  • myelin degeneration
  • myelin degradation
  • myelin figure
  • myelin formation
  • myelin loss
  • myelin oligodendrocyte
  • myelin oligodendrocyte glycoprotein
  • myelin protein
  • myelin proteolipid protein
  • myelin repair
  • myelin sheath
  • myelin staining

  • Selected Abstracts


    The extent of axonal loss in the long tracts in hereditary spastic paraplegia

    NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 6 2004
    G. C. DeLuca
    Hereditary spastic paraplegia (HSP) comprises a group of inherited neurodegenerative disorders with the shared characteristics of progressive weakness and spasticity predominantly affecting the lower limbs. Limited pathological accounts have described a ,dying back' axonal degeneration in this disease. However, the distribution and extent of axonal loss has not been elucidated in a quantitative way. We have studied post-mortem material from six HSP patients and 32 controls in detail. The population of axons was examined quantitatively in the corticospinal tracts from the medulla to the lumbar spinal cord and the sensory tracts from the lumbar to upper cervical spinal cord. Myelin and axon-stained sections were employed to estimate the notional area and axonal density, respectively, of both tracts. Our results indicate that in the corticospinal tracts there is a significant reduction in area and axonal density at all levels investigated in HSP compared to controls. In the corticospinal tracts, the ratio of medulla and lumbar total axonal number was significantly greater in HSP cases compared to controls suggesting more pronounced axonal loss in the distal neuraxis in HSP than in controls. The sensory tracts in HSP, in contrast, showed a significant reduction in area and axonal density only in the upper regions of the spinal cord. Similar to the corticospinal tracts, the ratio of lumbar and upper cervical cord total axonal number in the sensory tracts was increased in HSP cases compared to controls. These findings are consistent with a length-dependent ,dying back' axonopathy. Nerve fibre loss was not size-selective with both small and large diameter fibres affected. In HSP, axonal loss is widespread and symmetrical and its extent tract-specific. The characterization of the nature of axonal loss in HSP, where this is a primary phenomenon, may help the interpretation of axonal loss in conditions such as multiple sclerosis where the sequence of events is less clear. [source]


    Enhanced resolution of glycosylphosphatidylinositol-anchored and transmembrane proteins from the lipid-rich myelin membrane by two-dimensional gel electrophoresis

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 7 2003
    Christopher M. Taylor
    Abstract Two-dimensional gel electrophoresis (2-DE) has become a powerful and widely used technique for proteomic analyses. However, the limited ability of 2-DE to resolve transmembrane and glycosylphosphatidylinositol (GPI)-anchored proteins has slowed the identification of proteins from membrane-rich biological samples. Myelin is an unusually lipid-rich membrane with relatively few major proteins but many quantitatively minor proteins, most of which have an unknown identity and/or function. The goal of this study was to identify the optimal conditions of 2-DE for the separation of myelin proteins. We have identified two detergents, the nonionic n -dodecyl ,- D -maltoside and the zwitterionic amidosulfobetaine ASB-14, that are more effective in solubilizing myelin proteins than the commonly used zwitterionic detergent 3-[(3-cholamidopropyl)- dimethylammonio]-1-propanesulfonate (CHAPS). These detergents significantly enhance the solubility of both transmembrane (e.g., the highly hydrophobic and multiply acylated myelin proteolipid protein) and GPI-anchored (e.g., contactin and neuronal cell adhesion molecule) myelin proteins and enable their resolution by 2-DE. We conclude that these detergents are effective tools for the 2-DE analysis of myelin, and that they may be more generally useful for the analysis of membrane-rich biological samples. [source]


    Abnormal myelin formation in rhizomelic chondrodysplasia punctata type 2 (DHAPAT-deficiency)

    DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 7 2000
    László Sztriha MD PhD
    The case of a Yemeni girl with isolated peroxisomal acyl-CoA:dihydroxyacetonephosphateacyltransferase (DHAPAT) deficiency is reported. She had rhizomelic chondrodysplasia punctata, microcephaly, failure to thrive, delayed motor and mental development, and spastic quadriplegia. Deficient de novo plasmalogen synthesis in her fibroblasts as a result of low DHAPAT activity was found, while her very-long-chain fatty acid profile, phytanic acid concentration, alkyl-dihydroxyacetonephosphate synthase (alkyl-DHAP synthase) activity, and peroxisomal 3-ketoacyl-CoA thiolase protein were normal. A mutation in her DHAPAT complementary DNA resulted in the substitution of an arginine residue in the protein at position 211 by a histidine (R211H). Magnetic resonance imaging showed abnormal white matter signal in the centrum semiovale involving the arcuate fibers, while the corpus callosum was normal. DHAPAT and alkyl-DHAP synthase initiate the synthesis of plasmalogens, which are major constituents of myelin phospholipids. The reported girl's abnormal formation of myelin is probably related to the inadequacy of plasmalogen biosynthesis, which is likely to be due to deficient DHAPAT activity. [source]


    Combinatorial treatments for promoting axon regeneration in the CNS: Strategies for overcoming inhibitory signals and activating neurons' intrinsic growth state

    DEVELOPMENTAL NEUROBIOLOGY, Issue 9 2007
    Larry I. Benowitz
    Abstract In general, neurons in the mature mammalian central nervous system (CNS) are unable to regenerate injured axons, and neurons that remain uninjured are unable to form novel connections that might compensate for ones that have been lost. As a result of this, victims of CNS injury, stroke, or certain neurodegenerative diseases are unable to fully recover sensory, motor, cognitive, or autonomic functions. Regenerative failure is related to a host of inhibitory signals associated with the extracellular environment and with the generally low intrinsic potential of mature CNS neurons to regenerate. Most research to date has focused on extrinsic factors, particularly the identification of inhibitory proteins associated with myelin, the perineuronal net, glial cells, and the scar that forms at an injury site. However, attempts to overcome these inhibitors have resulted in relatively limited amounts of CNS regeneration. Using the optic nerve as a model system, we show that with appropriate stimulation, mature neurons can revert to an active growth state and that when this occurs, the effects of overcoming inhibitory signals are enhanced dramatically. Similar conclusions are emerging from studies in other systems, pointing to a need to consider combinatorial treatments in the clinical setting. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source]


    Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors

    DEVELOPMENTAL NEUROBIOLOGY, Issue 7 2007
    Soonmoon Yoo
    Abstract NG2+ cells in the adult rat spinal cord proliferate after spinal cord injury (SCI) and are postulated to differentiate into mature glia to replace some of those lost to injury. To further study these putative endogenous precursors, tissue at 3 days after SCI or from uninjured adults was dissociated, myelin partially removed and replicate cultures grown in serum-containing or serum-free medium with or without growth factors for up to 7 days in vitro (DIV). Cell yield after SCI was 5,6 times higher than from the normal adult. Most cells were OX42+ microglia/macrophages but there were also more than twice the normal number of NG2+ cells. Most of these coexpressed A2B5 or nestin, as would be expected for glial progenitors. Few cells initially expressed mature astrocyte (GFAP) or oligodendrocyte (CC1) markers, but more did at 7 DIV, suggesting differentiation of glial precursors in vitro. To test the hypothesis that NG2+ cells after SCI express progenitor-like properties, we prepared free-floating sphere and single cell cultures from purified suspension of NG2+ cells from injured spinal cord. We found that sphere cultures could be passaged in free-floating subcultures, and upon attachment the spheres clonally derived from an acutely purified single cell differentiated into oligodendrocytes and rarely astrocytes. Taken together, these data support the hypothesis that SCI stimulates proliferation of NG2+ cells that are glial progenitor cells. Better understanding the intrinsic properties of the NG2+ cells stimulated by SCI may permit future therapeutic manipulations to improve recovery after SCI. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source]


    Changes within maturing neurons limit axonal regeneration in the developing spinal cord

    DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2006
    Murray Blackmore
    Abstract Embryonic birds and mammals display a remarkable ability to regenerate axons after spinal injury, but then lose this ability during a discrete developmental transition. To explain this transition, previous research has emphasized the emergence of myelin and other inhibitory factors in the environment of the spinal cord. However, research in other CNS tracts suggests an important role for neuron-intrinsic limitations to axon regeneration. Here we re-examine this issue quantitatively in the hindbrain-spinal projection of the embryonic chick. Using heterochronic cocultures we show that maturation of the spinal cord environment causes a 55% reduction in axon regeneration, while maturation of hindbrain neurons causes a 90% reduction. We further show that young neurons transplanted in vivo into older spinal cord can regenerate axons into myelinated white matter, while older axons regenerate poorly and have reduced growth cone motility on a variety of growth-permissive ligands in vitro, including laminin, L1, and N-cadherin. Finally, we use video analysis of living growth cones to directly document an age-dependent decline in the motility of brainstem axons. These data show that developmental changes in both the spinal cord environment and in brainstem neurons can reduce regeneration, but that the effect of the environment is only partial, while changes in neurons by themselves cause a nearly complete reduction in regeneration. We conclude that maturational events within neurons are a primary cause for the failure of axon regeneration in the spinal cord. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


    The organisation of invertebrate brains: cells, synapses and circuits

    ACTA ZOOLOGICA, Issue 1 2010
    Ian A. Meinertzhagen
    Abstract Meinertzhagen, I.A. 2010. The organisation of invertebrate brains: cells, synapses and circuits. ,Acta Zoologica (Stockholm) 91: 64,71 Invertebrate brains are structurally diverse. Neuron numbers range from ,102 to 108 in different groups, compared with larger numbers in vertebrate brains, ,107 to 1014. The underpopulated brains of invertebrates are noted in their extreme cases for having few cells, and neurons that can be identified from animal to animal, many known in great detail. Although few in number, invertebrate neurons nevertheless comprise many classes. Correlated with the paucity of their number they are sparsely connected, many having ,50 synapses or fewer. Synaptic densities, roughly 1 per ,m3 of neuropile, differ little from those for much larger vertebrate neurons. Invertebrate neurons differ from their vertebrate counterparts in the position of their soma, generally in a cortex surrounding the neuropile that consequently occupies a relatively small volume. Their axons typically lack myelin and, supporting a range of conduction velocities, have diameters that differ over a wide range, from 103 to 10,1,m. Nerves with thousands of axons differ from neuropile fascicles, which typically have 20 or less. Unlike most vertebrate synapses, but like those of the vertebrate retina, synapses in many invertebrate groups , probably all ecdysozoans and possibly some lophotrochozoans , have synaptic contacts with multiple postsynaptic elements, dyads, triads and so on. [source]


    Clonally expanded plasma cells in the cerebrospinal fluid of MS patients produce myelin-specific antibodies

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2008
    Hans-Christian von Büdingen
    Abstract Clonally expanded plasma cells (cePC) and their presumed products, oligoclonal immunoglobulin,G bands (OCB), are characteristic findings in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS). While cePC and OCB strongly suggest an involvement of B cell-dependent immune mechanisms in the pathogenesis of MS, their actual pathological relevance and target antigens remain unknown. To further understand the potential role played by cePC, we generated a panel of monoclonal antibodies (MS-mAb) from CSF-derived cePC from four patients with early or definite MS. Single-cell RT-PCR of correctly paired heavy and light chain immunoglobulin genes from individual cePC ensured the subsequent resurrection of their original antigen specificity. Immunofluorescence stainings of MS lesion tissue with MS-mAb revealed myelin reactivity in the cePC repertoire of all four patients and intracellular filament reactivity in one patient. While myelin staining by MS-mAb was only rarely detectable in non-MS CNS white matter tissue, it was greatly enhanced at the edge of demyelinating lesions in MS brain tissue. Our findings provide conclusive evidence for the presence of an antigen-driven B cell response in the CSF of MS patients directed against epitopes present in areas of myelin degradation. [source]


    Hereditary neuropathy with liability to pressure palsies associated with central nervous system myelin lesions

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 6 2001
    J. Dac
    Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder most commonly caused by a 1.5-Mb deletion in chromosome 17p11.2 which contains the peripheral myelin protein-22 (PMP22) gene. Mutations resulting in functional loss of one PMP22 gene copy are less frequent. We present a 51-year-old patient with a l.5-Mb deletion in chromosome 17p11.2 who exhibited signs of peripheral as well as central nervous system lesions. He gave a history of recurrent episodes of limb numbness and weakness with spontaneous but incomplete recovery since age 20. His father and two brothers had similar symptoms. Neurological examination revealed signs of multiple mononeuropathy associated with frontal lobe, corticospinal tract and cerebellar dysfunction, as well as signs of initial cognitive impairment. Electrophysiological investigations showed a demyelinating peripheral nerve disease with multiple conduction blocks and conduction disturbances in both optic nerves. Magnetic resonance imaging of the brain revealed multiple subcortical and periventricular foci of myelin lesions. The association of central and peripheral nervous system lesions in this patient indicates a possible role of PMP22 not only in peripheral but also in central nervous system myelin structure. [source]


    Delay of myelin formation in arylsulphatase A-deficient mice

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005
    Afshin Yaghootfam
    Abstract Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by the deficiency of arylsulphatase A (ASA). This leads to the accumulation of the sphingolipid 3-O-sulphogalactosylceramide (sulphatide) and progressive demyelination in the nervous system of MLD patients. The mechanisms and development of pathology in the disease are still largely unknown. In this study we investigate how the inability to degrade sulphatide affects the formation of myelin in ASA-deficient (ASA,/,) mice. In mice at 2 weeks of age there was a substantial reduction in myelin basic protein (MBP) mRNA and protein. This was confirmed by an immunohistochemical analysis. MBP mRNA and protein, however, reach normal levels at 3 weeks of age. Proteolipid protein (PLP) and MAL mRNA were also reduced in ASA,/, mice at 2 weeks of age; whereas the level of PLP mRNA was normal at 26 weeks of age, MAL mRNA expression remained reduced up to this age. In situ hybridization revealed no significant changes in the number of myelinating oligodendrocytes or oligodendrocyte precursor cells in ASA,/, mice. These results suggest that oligodendrocyte differentiation was normal in ASA,/, mice. No differences were found in the expression of the sulphatide synthesizing enzymes cerebroside sulphotransferase and UDP-galactose : ceramide galactosyltransferase. Our data demonstrate a delay in myelin formation in ASA,/, mice. This raises the possibility that similar alterations in MLD patients may contribute to the pathology of the disease. [source]


    The contribution of activated phagocytes and myelin degeneration to axonal retraction/dieback following spinal cord injury

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2004
    Lowell T. McPhail
    Abstract Myelin-derived molecules inhibit axonal regeneration in the CNS. The Long,Evans Shaker rat is a naturally occurring dysmyelinated mutant, which although able to express the components of myelin lacks functional myelin in adulthood. Given that myelin breakdown exposes axons to molecules that are inhibitory to regeneration, we sought to determine whether injured dorsal column axons in a Shaker rat would exhibit a regenerative response absent in normally myelinated Long,Evans (control) rats. Although Shaker rat axons did not regenerate beyond the lesion, they remained at the caudal end of the crush site. Control rat axons, in contrast, retracted and died back from the edge of the crush. The absence of retraction/dieback in Shaker rats was associated with a reduced phagocytic reaction to dorsal column crush around the caudal edge of the lesion. Systemic injection of minocycline, a tetracycline derivative, in control rats reduced both the macrophage response and axonal retraction/dieback following dorsal column injury. In contrast, increasing macrophage activation by spinal injection of the yeast particulate zymosan had no effect on axonal retraction/dieback in Shaker rats. Schwann cell invasion was reduced in minocycline-treated control rats compared with untreated control rats, and was almost undetectable in Shaker rats, suggesting that like axonal retraction/dieback, spinal Schwann cell infiltration is dependent upon macrophage-mediated myelin degeneration. These results indicate that following spinal cord injury the phagocyte-mediated degeneration of myelin and subsequent exposure of inhibitory molecules to the injured axons contributes to their retraction/dieback. [source]


    Sulfatide with short fatty acid dominates in astrocytes and neurons

    FEBS JOURNAL, Issue 8 2006
    Giorgis Isaac
    Glycosphingolipids are located in cell membranes and the brain is especially enriched. We speculated that the subcellular location of glycosphingolipids depends on their fatty acid chain length because their sugar residues are constant, whereas fatty acid chain length can vary within the same molecule. To test this hypothesis we analysed the glycosphingolipid sulfatide, which is highly abundant in myelin and has mostly long fatty acids. We used a negative ion electrospray tandem mass spectrometry precursor ion scan to analyse the molecular species of sulfatide in cultured astrocytes and a mouse model of the human disease metachromatic leukodystrophy. In these arylsulfatase A (ASA)-deficient mice sulfatide accumulates intracellularly in neurons and astrocytes. Immunocytochemistry was also performed on cultured astrocytes and analysed using confocal laser scanning microscopy. Analyses of the molecular species showed that cultured astrocytes contained sulfatide with a predominance of stearic acid (C18), which was located in large intracellular vesicles throughout the cell body and along the processes. The same was seen in ASA-deficient mice, which accumulated a higher proportion (15 mol% compared with 8 mol% in control mice) of sulfatide with stearic acid. We conclude that the major fatty acid composition of sulfatide differs between white and grey matter, with neurons and astrocytes containing mostly short-chain fatty acids with an emphasis on stearic acid. Based on our results, we speculate that the fatty acid chain length of sulfatide might determine its intracellular (short chain) or extracellular (long chain) location and thereby its functions. [source]


    Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes

    GLIA, Issue 13 2010
    Astrid Bottelbergs
    Abstract Ablation of functional peroxisomes from all neural cells in Nestin-Pex5 knockout mice caused remarkable neurological abnormalities including motoric and cognitive malfunctioning accompanied by demyelination, axonal degeneration, and gliosis. An oligodendrocyte selective Cnp-Pex5 knockout mouse model shows a similar pathology, but with later onset and slower progression. Until now, the link between these neurological anomalies and the known metabolic alterations, namely the accumulation of very long-chain fatty acids (VLCFA) and reduction of plasmalogens, has not been established. We now focused on the role of peroxisomes in neurons and astrocytes. A neuron-specific peroxisome knockout model, NEX-Pex5, showed neither microscopic nor metabolic abnormalities indicating that the lack of functional peroxisomes within neurons does not cause axonal damage. Axonal integrity and normal behavior was also preserved when peroxisomes were deleted from astrocytes in GFAP-Pex5,/, mice. Nevertheless, peroxisomal metabolites were dysregulated in brain including a marked accumulation of VLCFA and a slight reduction in plasmalogens. Interestingly, despite minor targeting of oligodendrocytes in GFAP-Pex5,/, mice, these metabolic perturbations were also present in isolated myelin indicating that peroxisomal metabolites are shuttled between different brain cell types. We conclude that absence of peroxisomal metabolism in neurons and astrocytes does not provoke the neurodegenerative phenotype observed after deleting peroxisomes from oligodendrocytes. Lack of peroxisomal metabolism in astrocytes causes increased VLCFA levels in myelin, but this has no major impact on neurological functioning. © 2010 Wiley-Liss, Inc. [source]


    Absence of oligodendroglial glucosylceramide synthesis does not result in CNS myelin abnormalities or alter the dysmyelinating phenotype of CGT-deficient mice

    GLIA, Issue 4 2010
    Laleh Saadat
    Abstract To examine the function of glycosphingolipids (GSLs) in oligodendrocytes, the myelinating cells of the central nervous system (CNS), mice were generated that lack oligodendroglial expression of UDP-glucose ceramide glucosyltransferase (encoded by Ugcg). These mice (Ugcgflox/flox;Cnp/Cre) did not show any apparent clinical phenotype, their total brain and myelin extracts had normal GSL content, including ganglioside composition, and myelin abnormalities were not detected in their CNS. These data indicate that the elimination of gangliosides from oligodendrocytes is not detrimental to myelination. These mice were also used to asses the potential compensatory effect of hydroxyl fatty acid glucosylceramide (HFA-GlcCer) accumulation in UDP-galactose:ceramide galactosyltransferase (encoded by Cgt, also known as Ugt8a) deficient mice. At postnatal day 18, the phenotypic characteristics of the Ugcgflox/flox;Cnp/Cre;Cgt,/, mutants, including the degree of hypomyelination, were surprisingly similar to that of Cgt,/, mice, suggesting that the accumulation of HFA-GlcCer in Cgt,/, mice does not modify their phenotype. These studies demonstrate that abundant, structurally intact myelin can form in the absence of glycolipids, which normally represent over 20% of the dry weight of myelin. © 2009 Wiley-Liss, Inc. [source]


    Phosphorylation and lipid raft association of fibroblast growth factor receptor-2 in oligodendrocytes,

    GLIA, Issue 9 2009
    M. R. Bryant
    Abstract Fibroblast growth factors (FGFs) and their receptors (FGFRs) initiate diverse cellular responses that contribute to the regulation of oligodendrocyte (OL) function. To understand the mechanisms by which FGFRs elicit these cellular responses, we investigated the phosphorylation of signal transduction proteins and the role of cholesterol-glycosphingolipid-enriched "lipid raft" microdomains in differentiated OLs. Surprisingly, we found that the most abundant tyrosine-phosphorylated protein in OLs was the 120-kd isoform of FGFR2 and that it was phosphorylated even in the absence of FGF2, suggesting a potential ligand-independent function for this receptor. Furthermore, FGFR2, but not FGFR1, was associated with lipid raft microdomains in OLs and myelin (but not in astrocytes). This provides the first evidence for the association of FGFR with TX-100-insoluble lipid raft fractions. FGFR2 phosphorylated the key downstream target, FRS2 in OLs. Raft disruption resulted in loss of phosphorylated FRS2 from lipid rafts, coupled with the loss of Akt but not of Mek or Erk phosphorylation. This suggests that FGFR2-FRS2 signaling in lipid rafts operates via the PI3-Kinase/Akt pathway rather than the Ras/Mek/Erk pathway, emphasizing the importance of microenvironments within the cell membrane. Also present in lipid rafts in OLs and myelin, but not in astrocytes, was a novel 52-kd isoform of FGFR2 that lacked the extracellular ligand-binding region. These results demonstrate that FGFR2 in OLs and myelin possess unique characteristics that are specific both to receptor type and to OLs and provide a novel mechanism to elicit distinct cellular responses that mediate both FGF-dependent and -independent functions. © 2008 Wiley-Liss, Inc. [source]


    Identification of Tmem10/Opalin as an oligodendrocyte enriched gene using expression profiling combined with genetic cell ablation

    GLIA, Issue 11 2008
    Neev Golan
    Abstract Oligodendrocytes form an insulating multilamellar structure of compact myelin around axons, which allows efficient and rapid propagation of action potentials. However, little is known about the molecular mechanisms operating at the onset of myelination and during maintenance of the myelin sheath in the adult. Here we use a genetic cell ablation approach combined with Affymetrix GeneChip microarrays to identify a number of oligodendrocyte-enriched genes that may play a key role in myelination. One of the "oligogenes" we cloned using this approach is Tmem10/Opalin, which encodes for a novel transmembrane glycoprotein. In situ hybridization and RT-PCR analysis revealed that Tmem10 is selectively expressed by oligodendrocytes and that its expression is induced during their differentiation. Developmental immunofluorescence analysis demonstrated that Tmem10 starts to be expressed in the white matter tracks of the cerebellum and the corpus callosum at the onset of myelination after the appearance of other myelin genes such as MBP. In contrast to the spinal cord and brain, Tmem10 was not detected in myelinating Schwann cells, indicating that it is a CNS-specific myelin protein. In mature oligodendrocytes, Tmem10 was present at the cell soma and processes, as well as along myelinated internodes, where it was occasionally concentrated at the paranodes. In myelinating spinal cord cultures, Tmem10 was detected in MBP-positive cellular processes that were aligned with underlying axons before myelination commenced. These results suggest a possible role of Tmem10 in oligodendrocyte differentiation and CNS myelination. © 2008 Wiley-Liss, Inc. [source]


    Myelin-phagocytosing macrophages in isolated sciatic and optic nerves reveal a unique reactive phenotype

    GLIA, Issue 3 2008
    Denise van Rossum
    Abstract Macrophages are key effectors in demyelinating diseases of the central and peripheral nervous system by phagocytosing myelin and releasing immunoregulatory mediators. Here, we report on a distinct, a priori anti-inflammatory reaction of macrophages phagocytosing myelin upon contact with damaged nerve tissue. Macrophages rapidly invaded peripheral (sciatic) and central (optic) nerve tissues in vitro, readily incorporated myelin and expressed high levels of phagocytosis-associated molecules (e.g., Fc and scavenger receptors). In contrast, factors involved in antigen presentation (MHC class-II, CD80, CD86) revealed only a restricted expression. In parallel, a highly ordered appearance of cytokines and chemokines was detected. IL-10, IL-6, CCL22, and CXCL1 were immediately but transiently induced, whereas CCL2, CCL11, and TGF, revealed more persisting levels. Such a profile would attract neutrophils, monocytes/macrophages, and Th2 cells as well as bias for a Th2-supporting environment. Importantly, proinflammatory/Th1-supporting factors, such as TNF,, IL-12p70, CCL3, and CCL5, were not induced. Still the simultaneous presence of TGF, and IL-6 could assist Th17 development, further depending on yet not present IL-23. The release pattern was clearly distinct from reactive phenotypes induced in isolated macrophages and microglia upon treatment with IL-4, IL-13, bacterial lipopolysaccharide, IFN,, or purified myelin. Nerve-exposed macrophages thus commit to a unique functional orientation. © 2007 Wiley-Liss, Inc. [source]


    Nodal protrusions, increased Schmidt-Lanterman incisures, and paranodal disorganization are characteristic features of sulfatide-deficient peripheral nerves

    GLIA, Issue 6 2007
    Tomiko Hoshi
    Abstract Galactocerebroside and sulfatide are two major glycolipids in myelin; however, their independent functions are not fully understood. The absence of these glycolipids causes disruption of paranodal junctions, which separate voltage-gated Na+ and Shaker -type K+ channels in the node and juxtaparanode, respectively. In contrast to glial cells in the central nervous system (CNS), myelinating Schwann cells in the peripheral nervous system (PNS) possess characteristic structures, including microvilli and Schmidt-Lanterman incisures, in addition to paranodal loops. All of these regions are involved in axo,glial interactions. In the present study, we examined cerebroside sulfotransferase-deficient mice to determine whether sulfatide is essential for axo,glial interactions in these PNS regions. Interestingly, marked axonal protrusions were observed in some of the nodal segments, which often contained abnormally enlarged vesicles, like degenerated mitochondria. Moreover, many transversely cut ends of microvilli surrounded the mutant nodes, suggesting that alignments of the microvilli were disordered. The mutant PNS showed mild elongation of nodal Na+ channel clusters. Even though Caspr and NF155 were completely absent in half of the paranodes, short clusters of these molecules remained in the rest of the paranodal regions. Ultrastructural analysis indicated the presence of transverse bands in some paranodal regions and detachment of the outermost several loops. Furthermore, the numbers of incisures were remarkably increased in the mutant internode. Therefore, these results indicate that sulfatide may play an important role in the PNS, especially in the regions where myelin,axon interactions occur. © 2007 Wiley-Liss, Inc. [source]


    Subtle myelin defects in PLP-null mice ,

    GLIA, Issue 3 2006
    Jack Rosenbluth
    Abstract This study explores subtle defects in the myelin of proteolipid protein (PLP)-null mice that could potentially underlie the functional losses and axon damage known to occur in this mutant and in myelin diseases including multiple sclerosis. We have compared PLP-null central nervous system (CNS) myelin with normal myelin using ultrastructural methods designed to emphasize fine differences. In the PLP-null CNS, axons large enough to be myelinated often lack myelin entirely or are surrounded by abnormally thin sheaths. Short stretches of cytoplasm persist in many myelin lamellae. Most strikingly, compaction is incomplete in this mutant as shown by the widespread presence of patent interlamellar spaces of variable width that can be labeled with ferricyanide, acting as an aqueous extracellular tracer. In thinly myelinated fibers, interlamellar spaces are filled across the full width of the sheaths. In thick myelin sheaths, they appear filled irregularly but diffusely. These patent spaces constitute a spiral pathway through which ions and other extracellular agents may penetrate gradually, possibly contributing to the axon damage known to occur in this mutant, especially in thinly myelinated fibers, where the spiral path length is shortest and most consistently labeled. We show also that the "radial component" of myelin is distorted in the mutant ("diagonal component"), extending across the sheaths at 45° instead of 90°. These observations indicate a direct or indirect role for PLP in maintaining myelin compaction along the external surfaces of the lamellae and to a limited extent, along the cytoplasmic surfaces as well and also in maintaining the normal alignment of the radial component. © 2006 Wiley-Liss, Inc. [source]


    Oligodendrocyte-specific ceramide galactosyltransferase (CGT) expression phenotypically rescues CGT-deficient mice and demonstrates that CGT activity does not limit brain galactosylceramide level

    GLIA, Issue 3 2005
    Inge Zöller
    Abstract Galactosylceramide (GalC) is the major sphingolipid of the myelin membrane. Mice lacking GalC due to ceramide galactosyltransferase (CGT) deficiency form unstable and functionally affected myelin and exhibit a progressive demyelination, accompanied by severe motor coordination deficits. In addition to oligodendrocytes, CGT is also expressed in other cells, e.g., neurons and astrocytes. We examined the possibility that lack of CGT in these cells contributes to the phenotype of CGT-deficient mice. Toward this aim, we generated transgenic mice expressing CGT under the control of oligodendrocyte-specific proteolipid protein (PLP) promoter and examined the possibility of a transgenic rescue of CGT-deficient mice. CGT-deficient mice expressing the PLP-CGT transgene did not show any behavioral abnormalities, normal myelin structure, and MBP levels. CGT activity as well as GalC and sulfatide levels of rescued mice were not significantly different from wild-type controls. Thus, transgenic rescue with the PLP-CGT transgene was apparently complete. In contrast to wild-type and rescued mice, PLP-CGT transgenic mice on a wild-type background exhibited significantly elevated CGT activity which directly correlated with an increase in non-hydroxy fatty acid (NFA)-GalC, but not ,-hydroxy fatty acid (HFA)-GalC. HFA-GalC decreased in adult transgenic mice, indicating that NFA-GalC, but not HFA-GalC levels are limited by CGT activity. As a consequence, the total amount of GalC is unchanged over a rather wide range of CGT expression levels in the mouse brain. Our results indicate that loss of CGT in oligodendrocytes is exclusively responsible for the myelin structural deficits, demyelination, and behavioral abnormalities in CGT-deficient mice. © 2005 Wiley-Liss, Inc. [source]


    Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons

    GLIA, Issue 1 2001
    Masanori Sasaki
    Abstract The potential of bone marrow cells to differentiate into myelin-forming cells and to repair the demyelinated rat spinal cord in vivo was studied using cell transplantation techniques. The dorsal funiculus of the spinal cord was demyelinated by x-irradiation treatment, followed by microinjection of ethidium bromide. Suspensions of a bone marrow cell fraction acutely isolated from femoral bones in LacZ transgenic mice were prepared by centrifugation on a density gradient (Ficoll-Paque) to remove erythrocytes, platelets, and debris. The isolated cell fraction contained hematopoietic and nonhematopoietic stem and precursor cells and lymphocytes. The cells were transplanted into the demyelinated dorsal column lesions of immunosuppressed rats. An intense blue ,-galactosidase reaction was observed in the transplantation zone. The genetically labeled bone marrow cells remyelinated the spinal cord with predominately a peripheral pattern of myelination reminiscent of Schwann cell myelination. Transplantation of CD34+ hematopoietic stem cells survived in the lesion, but did not form myelin. These results indicate that bone marrow cells can differentiate in vivo into myelin-forming cells and repair demyelinated CNS. GLIA 35:26,34, 2001. © 2001 Wiley-Liss, Inc. [source]


    Decreasing myelin density reflected increasing white matter pathology in Alzheimer's disease,a neuropathological study

    INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, Issue 10 2005
    Martin Sjöbeck
    Abstract Background White matter disease (WMD) is frequently seen in Alzheimer's disease (AD) at neuropathological examination. It is defined as a subtotal tissue loss with a reduction of myelin, axons and oligodendrocytes as well as astrocytosis. Studies quantitatively defining the myelin loss in AD are scarce. The aim was to develop a method that could provide numerical values of myelin density in AD. The purpose was to compare the myelin contents in increasing grades of pathology of WMD, with age and cortical AD pathology as well as in different regions of the brain in AD. Material and methods Sixteen cases with AD and concomitant WMD were investigated with an in-house developed image analysis technique to determine the myelin attenuation with optical density (OD) in frontoparietal, parietal, temporal and occipital white matter on whole brain coronal sections stained for myelin with Luxol Fast Blue (LFB). The OD values in LFB were compared grouped according to Haematoxylin/Eosin (HE) evaluated mild, moderate and severe WMD or normal tissue. The OD values were also correlated with age and cortical AD pathology and compared between the different studied white matter regions. Results Increasing severity of WMD was associated with a statistically significant OD reduction. No correlation was seen between age and OD or overall cortical AD pathology. The OD values were significantly lower in frontoparietal-compared to occipital white matter. Conclusions Myelin loss in AD with WMD is a marked morphologic component of the disease and it is possible to determine the reduction objectively in neuropathological specimens with quantitative measures. This may be of use for clinical diagnostics including brain imaging. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Epitope mapping of the neuronal growth inhibitor Nogo-A for the Nogo receptor and the cognate monoclonal antibody IN-1 by means of the SPOT technique

    JOURNAL OF MOLECULAR RECOGNITION, Issue 3 2007
    Hilke Zander
    Abstract Nogo-A is a potent inhibitor of axonal outgrowth in the central nervous system of adult mammals, where it is expressed as a membrane protein on oligodendrocytes and in myelin. Here we describe an attempt to identify linear peptide epitopes in its sequence that are responsible for the interaction either with the Nogo receptor (NgR) or with the neutralizing monoclonal antibody IN-1. Analysis of an array of immobilized overlapping 15,mer peptides covering the entire amino acid sequence of human Nogo-A (1192 residues) revealed a single epitope with prominent binding activity both towards the recombinant NgR and the IN-1 Fab fragment. Further truncation and substitution analysis yielded the minimal epitope sequence 'IKxLRRL' (x,,,P), which occurs within the so-called Nogo66 region (residues 1054,1120) of Nogo-A. The bacterially produced Nogo66 fragment exhibited binding activity both for the recombinant NgR and for the IN-1 Fab fragment on the Western blot as well as in ELISA. Unexpectedly, the synthetic epitope peptide and the recombinant Nogo66 showed cross-reactivity with the 8-18C5 Fab fragment, which is directed against myelin oligodendrocyte glycoprotein (MOG) as a structurally unrelated target. On the other hand, the recombinant N-terminal domain of Nogo-A (residues 334,966) was shown to specifically interact on the Western blot and in an ELISA with the IN-1 Fab fragment but not with the recombinant NgR, which is in agreement with previous results. Hence, our data suggest that there is a distinct binding site for the Nogo receptor in the Nogo66 region of Nogo-A, whereas its interaction with NgR is less specific than anticipated before. Although there probably exists a non-linear epitope for the neutralizing antibody IN-1 in the N-terminal region of Nogo-A, which is likely to be accessible from outside the cell, a previously postulated second binding site for NgR in this region (called Nogo-A-24) remains elusive. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Developmental changes in the ultrastructure of the lamprey lateral line nerve during metamorphosis

    JOURNAL OF MORPHOLOGY, Issue 7 2009
    S. Gelman
    Abstract The ultrastructure of the trunk lateral line nerve of larval and adult lampreys was studied with transmission electron microscopy. We confirmed that lampreys' lateral line nerve lacks myelin. Nevertheless, all axons were wrapped by Schwann cell processes. In the larval nerve, gaps between Schwann cells were observed, where the axolemma was covered only by a basal lamina, indicating an earlier developmental stage. In the adult nerve, glial (Schwann cell) ensheathment was mostly complete. Additionally, we observed variable ratios of axons to Schwann cells in larval and adult preparations. In the larval nerve, smaller axons were wrapped by one Schwann cell. Occasionally, a single Schwann cell surrounded two axons. Larger axons were associated with two to five Schwann cells. In the adult nerve, smaller axons were surrounded by one, but larger axons by three to eight Schwann cells. The larval epineurium contained large adipose cells, separated from each other by single fibroblast processes. This layer of adipose tissue was reduced in adult preparation. The larval perineurium was thin, and the fibroblasts, containing large amounts of glycogen granules, were arranged loosely. The adult perineurium was thicker, consisting of at least three layers of fibroblasts separated by collagen fibrils. The larval and adult endoneurium contained collagen fibrils oriented orthogonally to each other. Both larval and adult lateral line nerves possessed a number of putative fascicles weakly defined by a thin layer of perineurial fibroblasts. These results indicate that after a prolonged larval stage, the lamprey lateral line nerve is subjected to additional maturation processes during metamorphosis. J. Morphol. 2009. © 2009 Wiley-Liss, Inc. [source]


    The life, death, and replacement of oligodendrocytes in the adult CNS

    JOURNAL OF NEUROCHEMISTRY, Issue 1 2008
    Dana M. McTigue
    Abstract Oligodendrocytes (OLs) are mature glial cells that myelinate axons in the brain and spinal cord. As such, they are integral to functional and efficient neuronal signaling. The embryonic lineage and postnatal development of OLs have been well-studied and many features of the process have been described, including the origin, migration, proliferation, and differentiation of precursor cells. Less clear is the extent to which OLs and damaged/dysfunctional myelin are replaced following injury to the adult CNS. OLs and their precursors are very vulnerable to conditions common to CNS injury and disease sites, such as inflammation, oxidative stress, and elevated glutamate levels leading to excitotoxicity. Thus, these cells become dysfunctional or die in multiple pathologies, including Alzheimer's disease, spinal cord injury, Parkinson's disease, ischemia, and hypoxia. However, studies of certain conditions to date have detected spontaneous OL replacement. This review will summarize current information on adult OL progenitors, mechanisms that contribute to OL death, the consequences of their loss and the pathological conditions in which spontaneous oligodendrogenesis from endogenous precursors has been observed in the adult CNS. [source]


    The different forms of PNS myelin P0 protein within and outside lipid rafts

    JOURNAL OF NEUROCHEMISTRY, Issue 1 2008
    Anna Fasano
    Abstract It is now well established that plasma membranes, such as the myelin sheath, are made of different microdomains with different lipid and protein composition. Lipid rafts are made mainly of sphingolipids and cholesterol, whereas the non-raft regions are made mainly of phosphoglycerides. Most myelin proteins may distribute themselves in raft and non-raft microdomains but the driving force that gives rise to their different distribution is not known yet. In this paper, we have studied the distribution of protein zero (P0), the most representative protein of PNS myelin, in the membrane microdomains. To this end, we have purified P0 from both non-raft (soluble P0, P0-S) and raft (P0-R) regions of PNS. Purified proteins were analyzed by two-dimensional gel electrophoresis and identified and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A detailed structural description of the two P0 forms is given in terms of amino acid sequence, post-translational modifications, and composition of associated lipids. Our findings suggest that structural differences between the two proteins, mainly related to the glycogroups, might be responsible for their different localization. [source]


    Proteomic analysis of nuclear factors binding to an intronic enhancer in the myelin proteolipid protein gene

    JOURNAL OF NEUROCHEMISTRY, Issue 5 2008
    Anna Dobretsova
    Abstract The myelin proteolipid protein gene (Plp1) encodes the most abundant protein found in CNS myelin, accounting for nearly one-half of the total protein. Its expression in oligodendrocytes is developmentally regulated , peaking during the active myelination period of CNS development. Previously, we have identified a novel enhancer (designated ASE) in intron 1 DNA that appears to be important in mediating the surge of Plp1 gene activity during the active myelination period. Evidence suggests that the ASE participates in the formation of a specialized multi-protein/DNA complex called an enhanceosome. The current study describes an optimized, five-step, DNA affinity chromatography purification procedure to purify nuclear proteins from mouse brain that bind to the 85-bp ASE sequence, specifically. Electrophoretic mobility shift assay analysis demonstrated that specific DNA-binding activity was retained throughout the purification procedure, resulting in concomitant enrichment of nucleoprotein complexes. Identification of the purported regulatory factors was achieved through mass spectrometry analysis and included over 20 sequence-specific DNA-binding proteins. Supplementary western blot analyses to determine which of these sequence-specific factors are present in oligodendrocytes, and their developmental and regional expression in whole brain, suggest that Pur, and Pur, rank highest among the candidate factors as constituents of the multi-protein complex formed on the ASE. [source]


    Alternative isoforms of myelin/oligodendrocyte glycoprotein with variable cytoplasmic domains are expressed in human brain

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2007
    Chantal Allamargot
    Abstract The human myelin/oligodendrocyte glycoprotein (MOG) gene is encoded by 10 exons that exhibit a complex pattern of alternative splicing. This report demonstrates that several MOG-specific alternative splice variants are indeed expressed in human oligodendrocytes (OLs) and myelin during perinatal development and are retained through adulthood. While all forms possess the common extracellular Ig-like domain, these alternative MOG structures differ significantly in their respective cytoplasmic domains. Peptide-specific antibodies were generated to facilitate detection of these different MOG moieties. The fidelity of these antibodies is shown using N20 OLs expressing individual MOG variants. These antibodies also only co-localize with another well-characterized marker of OLs and myelin , PLP/DM20 proteins. Among the human tissue samples tested, very limited expression occurred by 36 weeks gestation for 2,3 MOG variants, and the remaining MOG isoforms were not evident until shortly after birth. This study represents the first evidence of alternative translation products from the MOG gene. To date, it is believed that alternative splicing of MOG is limited to primates. Recent completion of various genome projects has revealed that alternative splicing is much more prevalent than originally estimated, and species-specific alternative splicing is now being shown to be highly relevant to expanding proteomic diversity. [source]


    Fibroblast growth factor receptor-3 null mice exhibit a delay in the development of oligodendrocytes and myelination

    JOURNAL OF NEUROCHEMISTRY, Issue 2002
    R. Bansal
    Fibroblast growth factors (FGFs) comprise of a family of twenty-three members which bind to four receptor tyrosine kinases (R1,R4). They induce a broad spectrum of biological effects in a variety of cell types, including neurons and glia in the CNS. In oligodendrocytes (OLs), FGF-2 elicits a number of specific responses depending on their stage of development. During OL development in vitro, the expressions of FGF-receptor mRNAs are differentially regulated. R1 mRNA increases gradually along with OL maturation, whereas R3 and R2 mRNAs peak at the OL progenitor and mature OL stages, respectively, suggesting a differential roles of these receptors in OL development. R3 is also expressed by astrocytes. To determine the roles of R3 during OL development and myelination in vivo, we have employed mice lacking functional R3 (R3-null). During myelination (P7, P9, P13), reduced numbers of differentiated OLs and myelinated fibers are observed in the brains of R3 null mice compared to wild type mice. Moreover, up-regulation of glial fibrillary acidic protein-positive astrocytes is found in the cerebellum and spinal cord of R3 null mutants. However, the number of OL progenitors (PDGF-Ra), BrdU incorporation, and cell survival (TUNEL assay) are all comparable, and R3-null myelin in adult mice appears to be similar to that of wild type mice. In mixed primary cultures of post-natal R3 null brain (that have few if any neurons), OLs exhibit a delay in differentiation similar to that observed in vivo. In summary, our results elucidate regulatory roles of FGF-R3 in mouse brain, in particular with regard to its roles in the timing of OL maturation and myelin formation (MS Society, Canada, NIH NS38878-03). [source]


    Chemical inducers and transcriptional markers of oligodendrocyte differentiation

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2010
    Lara Joubert
    Abstract Oligodendrocytes generate and maintain myelin, which is essential for axonal function and protection of the mammalian central nervous system. To advance our molecular understanding of differentiation by these cells, we screened libraries of pharmacologically active compounds and identified inducers of differentiation of Oli-neu, a stable cell line of mouse oligodendrocyte precursors (OPCs). We identified four broad classes of inducers, namely, forskolin/cAMP (protein kinase A activators), steroids (glucocorticoids and retinoic acid), ErbB2 inhibitors, and nucleoside analogs, and confirmed the activity of these compounds on rat primary oligodendrocyte precursors and mixed cortical cultures. We also analyzed transcriptional responses in the chemically induced mouse and rat OPC differentiation processes and compared these with earlier studies. We confirm the view that ErbB2 is a natural signaling component that is required for OPC proliferation, whereas ErbB2 inhibition or genetic knockdown results in OPC differentiation. © 2010 Wiley-Liss, Inc. [source]