Myc

Distribution by Scientific Domains
Distribution within Medical Sciences

Terms modified by Myc

  • myc gene
  • myc locus

  • Selected Abstracts


    Genomic imbalances in rhabdomyosarcoma cell lines affect expression of genes frequently altered in primary tumors: An approach to identify candidate genes involved in tumor development

    GENES, CHROMOSOMES AND CANCER, Issue 6 2009
    Edoardo Missiaglia
    Rhabdomyosarcomas (RMS) are the most common pediatric soft tissue sarcomas. They resemble developing skeletal muscle and are histologically divided into two main subtypes; alveolar and embryonal RMS. Characteristic genomic aberrations, including the PAX3 - and PAX7-FOXO1 fusion genes in alveolar cases, have led to increased understanding of their molecular biology. Here, we determined the effect of genomic copy number on gene expression levels through array comparative genomic hybridization (CGH) analysis of 13 RMS cell lines, confirmed by multiplex ligation-dependent probe amplification copy number analyses, combined with their corresponding expression profiles. Genes altered at the transcriptional level by genomic imbalances were identified and the effect on expression was proportional to the level of genomic imbalance. Extrapolating to a public expression profiling dataset for 132 primary RMS identified features common to the cell lines and primary samples and associations with subtypes and fusion gene status. Genes identified such as CDK4 and MYCN are known to be amplified, overexpressed, and involved in RMS tumorigenesis. Of the many genes identified, those with likely functional relevance included CENPF, DTL, MYC, EYA2, and FGFR1. Copy number and expression of FGFR1 was validated in additional primary material and found amplified in 6 out of 196 cases and overexpressed relative to skeletal muscle and myoblasts, with significantly higher expression levels in the embryonal compared with alveolar subtypes. This illustrates the ability to identify genes of potential significance in tumor development through combining genomic and transcriptomic profiles from representative cell lines with publicly available expression profiling data from primary tumors. © 2009 Wiley-Liss, Inc. [source]


    Mechanisms of gene amplification and evidence of coamplification in drug-resistant human osteosarcoma cell lines

    GENES, CHROMOSOMES AND CANCER, Issue 4 2009
    Claudia M. Hattinger
    Gene amplification and copy number changes play a pivotal role in malignant transformation and progression of human tumor cells by mediating the activation of genes and oncogenes, which are involved in many different cellular processes including development of drug resistance. Since doxorubicin (DX) and methotrexate (MTX) are the two most important drugs for high-grade osteosarcoma (OS) treatment, the aim of this study was to identify genes gained or amplified in six DX- and eight MTX-resistant variants of the human OS cell lines U-2OS and Saos-2, and to get insights into the mechanisms underlying the amplification processes. Comparative genomic hybridization techniques identified amplification of MDR1 in all six DX-resistant and of DHFR in three MTX-resistant U-2OS variants. In addition, progressive gain of MLL was detected in the four U-2OS variants with higher resistance levels either to DX or MTX, whereas gain of MYC was found in all Saos-2 MTX-resistant variants and the U-2OS variant with the highest resistance level to DX. Fluorescent in situ hybridization revealed that MDR1 was amplified in U-2OS and Saos-2/DX-resistant variants manifested as homogeneously staining regions and double minutes, respectively. In U-2OS/MTX-resistant variants, DHFR was amplified in homogeneously staining regions, and was coamplified with MLL in relation to the increase of resistance to MTX. Gene amplification was associated with gene overexpression, whereas gene gain resulted in up-regulated gene expression. These results indicate that resistance to DX and MTX in human OS cell lines is a multigenic process involving gene copy number and expression changes. © 2008 Wiley-Liss, Inc. [source]


    Prognostic significance of secondary cytogenetic alterations in follicular lymphomas

    GENES, CHROMOSOMES AND CANCER, Issue 12 2008
    Nathalie A. Johnson
    Follicular lymphoma (FL) is an indolent lymphoma with a long median survival. Transformation to a more aggressive histology (TLy) is a major cause of mortality. The critical events leading to TLy are unknown. We assessed the prognostic significance of secondary cytogenetic alterations on overall survival (OS) and transformation from 210 diagnostic FL biopsies. We analyzed serial and transformed karyotypes for recurrent alterations that predict transformation. Over 10 years, 31% of cases developed TLy. The only alteration in diagnostic karyotypes that correlated with an inferior OS was an additional X chromosome in males only (P = 0.005) suggesting that other mechanisms including epigenetic factors and over-expression of genes on the X chromosome may play a role in FL pathogenesis. In transformed karyotypes, 8q24 (MYC) translocations were common (14/37) and resulted in a median survival of 3 months posttransformation (P = 0.01). In serially obtained biopsies (28 pts), 43% of the later biopsies lacked the cytogenetic alterations found in the original FL karyotype, suggesting that karyotypic progression of FL is not strictly linear in all cases. Consequently, studying clonal evolution in FL using serial biopsies may not represent the full complexity of genetic alterations leading to transformation. © 2008 Wiley-Liss, Inc. [source]


    Translocation,excision,deletion,amplification mechanism leading to nonsyntenic coamplification of MYC and ATBF1,

    GENES, CHROMOSOMES AND CANCER, Issue 2 2006
    Nadine Van Roy
    Despite oncogene amplification being a characteristic of many tumor types, the mechanisms leading to amplicon formation have remained largely unresolved. In this study, we used a combinatorial approach of fluorescence in situ hybridization and single-nucleotide polymorphism chip gene copy number analyses to unravel the mechanism leading to nonsyntenic coamplification of MYC and ATBF1 in SJNB-12 cells. To explain our findings, we propose a complex series of events consisting of multiple double-strand breaks, accompanied (or triggered) by the formation of a reciprocal translocation t(8;16), as well as excisions and deletions near the translocation breakpoints. This study provides evidence for a translocation,excision,deletion,amplification sequence of events rather than a breakage,fusion,bridge model, which has been more frequently proposed to explain proto-oncogene amplification. Furthermore, it illustrates the power of presently available tools for detailed analysis of the complex rearrangements that accompany amplicon formation. © 2005 Wiley-Liss, Inc. [source]


    Level of MYC overexpression in pediatric Burkitt's lymphoma is strongly dependent on genomic breakpoint location within the MYC locus

    GENES, CHROMOSOMES AND CANCER, Issue 2 2004
    Monika Wilda
    Increased transcriptional activity of the MYC gene is a characteristic feature of Burkitt's lymphoma. Aberrant MYC expression is caused by (1) chromosomal translocation to one of the loci carrying an immunoglobulin gene, (2) mutation within the translocated allele, (3) loss of the block to transcription elongation, or (4) promoter shift. To investigate the influence of breakpoint locations within the MYC gene on MYC transcript levels, we determined both the precise genomic MYC/IGH breakpoints and the amount of MYC mRNA in 25 samples of pediatric Burkitt's lymphoma with translocation t(8;14)(q24;q32). Patients with breakpoints that were 5, from MYC exon 1 had significantly lower expression of MYC than did patients who had a breakpoint within exon 1 or intron 1 (P < 0.05 and 0.005, respectively). The highest mRNA level of MYC (1,006 copies per 100 copies ABL1) was detected in patients with loss of the first exon and transcription initiation from a cryptic P3 promoter within the first intron of the MYC gene. In contrast, there was no obvious correlation between breakpoint locations within the IgH locus and the amount of MYC mRNA. © 2004 Wiley-Liss, Inc. [source]


    ERBB2, TBX2, RPS6KB1, and MYC alterations in breast tissues of BRCA1 and BRCA2 mutation carriers

    GENES, CHROMOSOMES AND CANCER, Issue 1 2004
    Camilo Adem
    Breast cancer risk is greatly increased in women who carry mutations in the BRCA1 or BRCA2 genes. Because breast cancer initiation is different between BRCA1/2 mutation carriers and women who do not carry mutations, it is possible that the mechanism of breast cancer progression is also different. Histopathologic and genetic studies have supported this hypothesis. To test this hypothesis further, we utilized a large cohort of women who underwent therapeutic mastectomy (TM) and contralateral prophylactic mastectomy (PM). From this cohort, we developed case groups of women with a family history of breast cancer with BRCA1/2 deleterious mutations, with unclassified variant alterations, and with no detected mutation and matched these cases with sporadic controls from the same TM and PM cohort. Fluorescence in situ hybridization was performed on paraffin sections by use of dual-color probes for ERBB2/CEP17, MYC/CEP8, TBX2/CEP17, and RPS6KB1/CEP17. All malignant and benign lesions, including putative precursor lesions, were studied. The invasive cancers from deleterious mutation carriers had a higher prevalence of duplication of MYC (P = 0.006) and TBX2 (P = 0.0008) compared to controls and a lower prevalence of ERBB2 amplification (P = 0.011). Coduplication of MYC and TBX2 was common in the in situ and invasive lesions from the deleterious mutation carriers. The odds ratio of having a BRCA1/2 mutation is 31.4 (95% CI = 1.7,569) when MYC and TBX2 are coduplicated but ERBB2 is normal. Unclassified variant carriers/no mutation detected and sporadic controls had a similar prevalence of alterations, suggesting that hereditary patients with no deleterious mutations follow a progression pathway similar to that of sporadic cases. With the exception of one atypical ductal hyperplasia lesion, no putative precursor lesion showed any detectable alteration of the probes tested. There was no significant intratumoral heterogeneity of genetic alterations. Our data confirm that a specific pattern of genomic instability characterizes BRCA1/2 -related cancers and that this pattern has implications for the biology of these cancers. Moreover, our current and previous results emphasize the interaction between phenotype and genotype in BRCA1/2 -related breast cancers and that a combination of morphologic features and alterations of ERBB2, MYC, and TBX2 may better define mechanisms of tumor progression, as well as determine which patients are more likely to carry BRCA1/2 mutations. © 2004 Wiley-Liss, Inc. [source]


    Transgenic mice for Cre-inducible overexpression of the oncogenes c-MYC and Pim-1 in multiple tissues

    GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 10 2006
    Meejeon Roh
    Abstract The transcription factor c-MYC and the serine-threonine kinase Pim-1 have multiple roles in development and cancer, including in lymphomagenesis and prostate tumorigenesis. In some cancers, MYC and Pim-1 oncogenes are co-expressed and show marked cooperativity. To facilitate the analysis of the pathological roles of MYC and Pim-1 in specific cell types and developmental stages, we generated mice carrying Cre-inducible MYC/Pim-1 transgenes. The mice carry a constitutively expressed lacZ marker and silent MYC/Pim-1 genes. Cre-mediated recombination results in deletion of the lacZ marker and concurrent activation of the MYC/Pim-1 transgene. In addition, the Pim-1 mice harbor an alkaline phosphatase gene as a positive marker for recombination. Mouse lines for each gene were established, which show distinct patterns of expression in multiple tissues. In vivo recombination was confirmed for all lines by breeding to Cre transgenic mice. These mice provide a valuable resource for investigating the significance of MYC and Pim-1 overexpression in various tissues. genesis 44:447,453, 2006. © 2006 Wiley-Liss, Inc. [source]


    Inhibition of poly adenosine diphosphate-ribose polymerase decreases hepatocellular carcinoma growth by modulation of tumor-related gene expression,

    HEPATOLOGY, Issue 1 2010
    Rosa Quiles-Perez
    Hepatocellular carcinoma (HCC) is associated with a poor prognosis due to a lack of effective treatment options. In HCC a significant role is played by DNA damage and the inflammatory response. Poly (ADP-ribose) polymerase-1 (PARP-1) is an important protein that regulates both these mechanisms. The objective of this study was to examine the effect of pharmacology PARP-1 inhibition on the reduction of tumor volume of HCC xenograft and on the hepatocarcinogenesis induced by diethyl-nitrosamine (DEN). Pharmacologic PARP-1 inhibition with DPQ greatly reduces tumor xenograft volume with regard to a nontreated xenograft (394 mm3 versus 2,942 mm3, P < 0.05). This observation was paralleled by reductions in xenograft mitosis (P = 0.02) and tumor vasculogenesis (P = 0.007, confirmed by in vitro angiogenesis study), as well as by an increase in the number of apoptotic cells in DPQ-treated mice (P = 0.04). A substantial difference in key tumor-related gene expression (transformed 3T3 cell double minute 2 [MDM2], FLT1 [vascular endothelial growth factor receptor-1, VEGFR1], epidermal growth factor receptor [EPAS1]/hypoxia-inducible factor 2 [HIF2A], EGLN1 [PHD2], epidermal growth factor receptor [EGFR], MYC, JUND, SPP1 [OPN], hepatocyte growth factor [HGF]) was found between the control tumor xenografts and the PARP inhibitor-treated xenografts (data confirmed in HCC cell lines using PARP inhibitors and PARP-1 small interfering RNA [siRNA]). Furthermore, the results obtained in mice treated with DEN to induce hepatocarcinogenesis showed, after treatment with a PARP inhibitor (DPQ), a significant reduction both in preneoplastic foci and in the expression of preneoplastic markers and proinflammatory genes (Gstm3, Vegf, Spp1 [Opn], IL6, IL1b, and Tnf), bromodeoxyuridine incorporation, and NF-,B activation in the initial steps of carcinogenesis (P < 0.05). Conclusion: This study shows that PARP inhibition is capable of controlling HCC growth and preventing tumor vasculogenesis by regulating the activation of different genes involved in tumor progression. (HEPATOLOGY 2010;51:255,266.) [source]


    Frequent amplification and overexpression of CCND1 in male breast cancer

    INTERNATIONAL JOURNAL OF CANCER, Issue 6 2004
    Maarit Bärlund
    Abstract Genetic events underlying the pathogenesis of breast cancer have been studied extensively and several clinically significant markers have been identified. For example, amplification and overexpression of the ERBB2 oncogene is associated with poor prognosis in breast cancer and ERBB2 serves as a target for antibody-based therapy. Current knowledge on the pathogenesis of male breast cancer (MBC) is limited. The purpose of our study was to investigate the potential relevance of a series of genes known to be amplified in female breast cancer (FBC) in a the development and pathogenesis of MBC. To this end, we applied fluorescence in situ hybridization and immunohistochemistry to the analysis of 128 breast tumors from males. Amplification of ERBB2, MYC, PPM1D and ZNF217 was detected rarely (1,2% of tumors) indicating a considerably lower amplification frequency than in FBC. CCND1 amplification was observed in 12% of cases, being in good concordance with findings from FBC. In addition, CCND1 overexpression was detected in 63% of tumors and was associated with ER positivity (p < 0.0001). Our results indicate distinct differences in the genetic basis of MBC and FBC and suggest that marked differences exist in the pathogenesis of these diseases. The lack of ERBB2 involvement was especially unexpected and implies that ERBB2 -targeted therapies are unlikely to be beneficial in MBC. Furthermore, the high frequency of hormone receptor positivity and the association between ER positivity and CCND1 overexpression supports the notion that hormonal regulation is likely to be essential for the development of MBC. © 2004 Wiley-Liss, Inc. [source]


    Identification of genetic networks involved in the cell growth arrest and differentiation of a rat astrocyte cell line RCG-12,

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2007
    Ichiro Takasaki
    Abstract The purpose of the present study is to establish and characterize a conditionally immortalized astrocyte cell line and to clarify the genetic networks responsible for the cell growth arrest and differentiation. A conditionally immortalized astrocyte cell line, RCG-12, was established by infecting primary cultured rat cortical glia cells with a temperature-sensitive simian virus 40 large T-antigen. At a permissive temperature of 33°C, the large T-antigen was expressed and cells grew continuously. On the other hand, the down-regulation of T-antigen at a non-permissive temperature of 39°C led to growth arrest and differentiation. The cells expressed astrocyte-expressed genes such as glial fibrillary acidic protein. Interestingly, the differentiated condition induced by the non-permissive temperature significantly elevated the expression levels of several astrocyte-expressed genes. To identify the detailed mechanisms by which non-permissive temperature-induced cell growth arrest and differentiation, we performed high-density oligonucleotide microarray analysis and found that 556 out of 15,923 probe sets were differentially expressed 2.0-fold. A computational gene network analysis revealed that a genetic network containing up-regulated genes such as RB, NOTCH1, and CDKN1A was associated with the cellular growth and proliferation, and that a genetic network containing down-regulated genes such as MYC, CCNB1, and IGF1 was associated with the cell cycle. The established cell line RCG-12 retains some characteristics of astrocytes and should provide an excellent model for studies of astrocyte biology. The present results will also provide a basis for understanding the detailed molecular mechanisms of the growth arrest and differentiation of astrocytes. J. Cell. Biochem. 102: 1472,1485, 2007. © 2007 Wiley-Liss, Inc. [source]


    Comprehensive Analysis of Expressed Sequence Tags from the Pulp of the Red Mutant ,Cara Cara' Navel Orange (Citrus sinensis Osbeck)

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 10 2010
    Jun-Li Ye
    Expressed sequence tag (EST) analysis of the pulp of the red-fleshed mutant ,Cara Cara' navel orange provided a starting point for gene discovery and transcriptome survey during citrus fruit maturation. Interpretation of the EST datasets revealed that the mutant pulp transcriptome held a high section of stress responses related genes, such as the type III metallothionein-like gene (6.0%), heat shock protein (2.8%), Cu/Zn superoxide dismutase (0.8%), late embryogenesis abundant protein 5 (0.8%), etc. 133 transcripts were detected to be differentially expressed between the red mutant and its orange-color wild genotype ,Washington' via digital expression analysis. Among them, genes involved in metabolism, defense/stress and signal transduction were statistical overrepresented. Fifteen transcription factors, composed of NAM, ATAF, and CUC transcription factor (NAC); myeloblastosis (MYB); myelocytomatosis (MYC); basic helix-loop-helix (bHLH); basic leucine zipper (bZIP) domain members, were also included. The data reflected the distinct expression profile and the unique regulatory module associated with these two genotypes. Eight differently expressed genes analyzed in digital were validated by quantitative real-time polymerase chain reaction. For structural polymorphism, both simple sequence repeats and single nucleotide polymorphisms (SNP) loci were surveyed; dinucleotide presentation revealed a bias toward AG/GA/TC/CT repeats (52.5%), against GC/CG repeats (0%). SNPs analysis found that transitions (73%) outnumbered transversions (27%). Seventeen potential cultivar-specific and 387 heterozygous SNP loci were detected from ,Cara Cara' and ,Washington' EST pool. [source]


    Hepsin cooperates with MYC in the progression of adenocarcinoma in a prostate cancer mouse model

    THE PROSTATE, Issue 6 2010
    Srinivas Nandana
    Abstract BACKGROUND Hepsin is a cell surface protease that is over-expressed in more than 90% of human prostate cancer cases. The previously developed Probasin-hepsin/Large Probasin-T antigen (PB-hepsin/LPB-Tag) bigenic mouse model of prostate cancer demonstrates that hepsin promotes primary tumors that are a mixture of adenocarcinoma and neuroendocrine (NE) lesions, and metastases that are NE in nature. However, since the majority of human prostate tumors are adenocarcinomas, the contribution of hepsin in the progression of adenocarcinoma requires further investigation. METHODS We crossed the PB-hepsin mice with PB-Hi-myc transgenic mouse model of prostate adenocarcinoma and characterized the tumor progression in the resulting PB-hepsin/PB-Hi-myc bigenic mice. RESULTS We report that PB-hepsin/PB-Hi-myc bigenic mice develop invasive adenocarcinoma at 4.5 months. Further, histological analysis of the 12- to 17-month-old mice revealed that the PB-hepsin/PB-Hi-myc model develops a higher grade adenocarcinoma compared with age-matched tumors expressing only PB-Hi-myc. Consistent with targeting hepsin to the prostate, the PB-hepsin/PB-Hi-myc tumors showed higher hepsin expression as compared to the age-matched myc tumors. Furthermore, endogenous expression of hepsin increased in the PB-Hi-myc mice as the tumors progressed. CONCLUSIONS Although we did not detect any metastases from the prostates in either the PB-hepsin/PB-Hi-myc or the PB-Hi-myc mice, our data suggests that hepsin and myc cooperate during the progression to high-grade prostatic adenocarcinoma. Prostate 70: 591,600, 2010. © 2009 Wiley-Liss, Inc. [source]


    MYC gene numerical aberrations in actinic keratosis and cutaneous squamous cell carcinoma

    BRITISH JOURNAL OF DERMATOLOGY, Issue 5 2009
    A. Toll
    Summary Background, The genetic alterations that drive the transition from actinic keratoses (AKs) to cutaneous squamous cell carcinomas (SCCs) have not been defined precisely. Amplification and/or overexpression of the MYC proto-oncogene have been demonstrated in several human, malignant tumours including head and neck SCCs. Objectives, To evaluate the presence of MYC genomic aberrations in both AKs and SCCs. Methods, Skin biopsy specimens corresponding to AKs, SCCs and control samples were included in two paraffin-embedded tissue microarrays. MYC cytogenetic profile was evaluated by fluorescence in situ hybridization (FISH). The results obtained were compared with MYC immunohistochemical expression. Results, Twenty-three AKs and 30 SCCs were evaluated. MYC numerical aberrations were observed in eight of 23 (35%) AKs and 19 of 30 (63%) SCCs (P = 0·05). MYC numerical aberrations were more frequent in moderately to poorly differentiated SCCs (77%) when compared with well-differentiated SCCs (25%; P = 0·027). A significant association between copy number gains of MYC by FISH analysis and MYC protein expression was demonstrated. Conclusions,MYC gains and amplifications are frequent cytogenetic abnormalities in SCCs and may play a relevant role in promoting SCC undifferentiation and tumoral progression. [source]


    Nuclear ,-catenin in basal cell carcinoma correlates with increased proliferation

    BRITISH JOURNAL OF DERMATOLOGY, Issue 1 2004
    G. Saldanha
    Summary Background Virtually all BCCs have deregulation of the Hedgehog (Hh) signalling pathway and a proportion show nuclear ,-catenin accumulation. The latter is thought to be due to Hh pathway-directed Wnt expression but this has not been tested. An alternative cause of nuclear ,-catenin accumulation is gene mutation, which stabilizes the protein. Theoretically, reduced E-cadherin expression could also be important because it can sequester ,-catenin at the cell membrane. In turn, nuclear ,-catenin can increase expression of MYC and cyclin D1, thus potentially altering proliferation. Objectives To assess whether nuclear ,-catenin occurs in BCC, and to look at potential causes and consequences. Methods Nuclear ,-catenin was assessed by immunohistochemistry, and its causes by analysis of E-cadherin expression, ,-catenin exon 3 mutation and WNT5A expression. Its consequences were assessed by analysing proliferation. Results We found nuclear ,-catenin in 20 of 86 paraffin-embedded sections of BCCs using immunohistochemistry. BCCs showed increased WNT5A relative to the surrounding skin. No mutations in exon 3 of the ,-catenin gene were found in 10 cases. There was no association between ,-catenin localization and E-cadherin expression. Tumours with nuclear ,-catenin had significantly higher proliferation (P < 0·01). Conclusions The absence of ,-catenin gene mutations indicate that the Hh pathway-directed Wnt signalling remains the most likely cause of nuclear ,-catenin accumulation in BCC. Additionally, the correlation with increased proliferation is the first evidence that nuclear ,-catenin may have a biological effect. However, a causal link between Hh pathway deregulation, Wnt ligand overexpression, nuclear ,-catenin accumulation and increased proliferation remains to be confirmed. [source]


    Heterogeneity in uveal melanoma assessed by multiplex ligation-dependent probe amplification (MLPA)

    ACTA OPHTHALMOLOGICA, Issue 2009
    J DOPIERALA
    Purpose To study intratumour heterogeneity in primary uveal melanoma (UM) by MLPA in microdissected formalin-fixed, paraffin-embedded (FFPE) tissues. Methods DNA was extracted from 2-9 areas microdissected from 32 FFPE UMs. Thirty-one loci on chromosomes 1p, 3, 6 and 8 were tested for copy number changes using the SALSA MLPA P027.B1 assay (MRC Holland). MLPA data were displayed as dosage quotients (DQs), which were classified to 5 ranges (0.35-0.64 deleted; 0.65-0.84 equivocal deletion; 0.85-1.14 normal; 1.15-1.35 equivocal amplification; >1.35 amplified). The tumour was considered heterogeneous at a locus, if a) the difference in DQs of any two areas was higher than 0.2 (value determined by ROC analysis), and b) the DQs of the areas belonged to different ranges. Results Genetic abnormalities were detected in all 32 UMs. Monosomy 3, the most significant metastasis predictor, and gain of 8q genes MYC or DDEF1 were detected in at least 1 microdissected area of 22 (69%) and 28 (87%) of the tumours, respectively. The comparison of MLPA data obtained from different areas of UMs showed heterogeneity in 1-24 loci across chromosomes 1p, 3, 6 and 8 in 26 (81%) tumours. Interestingly, trisomy 3 was observed in 3 (9%) UMs and these tumours showed the highest degree of heterogeneity (>23 heterogeneous loci). Intratumour heterogeneity of 3p12.2 (ROBO1) and 6p21.2 (CDKN1A) were most common and present in more than 35% of the tumours. Conclusion Heterogeneity of chromosomal abnormalities of 1p, 3, 6 and 8 is present in many UM. Taking one random tumour sample for prognostic testing, therefore, may not be representative of the whole tumour. [source]


    Differential effects of Mxi1-SR, and Mxi1-SR, in Myc antagonism

    FEBS JOURNAL, Issue 17 2007
    Claire Dugast-Darzacq
    Mxi1 belongs to the Myc-Max-Mad transcription factor network. Two Mxi1 protein isoforms, Mxi1-SR, and Mxi1-SR,, have been described as sharing many biological properties. Here, we assign differential functions to these isoforms with respect to two distinct levels of Myc antagonism. Unlike Mxi1-SR,, Mxi1-SR, is not a potent suppressor of the cellular transformation activity of Myc. Furthermore, although Mxi1-SR, exhibits a repressive effect on the MYC promoter in transient expression assays, Mxi1-SR, activates this promoter. A specific domain of Mxi1-SR, contributes to these differences. Moreover, glyceraldehyde-3-phosphate dehydrogenase interacts with Mxi1-SR, and enhances its ability to activate the Myc promoter. Our findings suggest that Mxi1 gains functional complexity by encoding isoforms with shared and distinct activities. [source]


    Expression of Mina53, a product of a Myc target gene in mouse testis

    INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 2 2006
    MAKOTO TSUNEOKA
    Summary Recently we have identified a novel gene mina53 (mina), which is a direct transcriptional target of oncoprotein Myc. Mina53 protein was shown to be highly expressed in tumour cells and to play a role in cell proliferation. Here we report the expression of Mina53 in mouse testis, which contains proliferating cells and expresses many cancer-related genes. Immunohistochemical studies by using newly produced monoclonal antibody to Mina53 showed that Mina53 was expressed in the nuclei of spermatogonia. Mina53 was also expressed in meiotic prophase cells such as preleptotene, leptotene and zygotene, and weakly in early pachytene spermatocytes, but was absent in late pachytene spermatocytes, spermatids and mature sperm. The expression pattern of Mina53 was quite similar to that of proliferation cell nuclear antigen (PCNA). Using experimental cryptorchid testis, it was found that Mina53 was highly expressed in undifferentiated spermatogonia, which were PCNA-positive. These results suggest that Mina53 is prominently expressed in proliferating, undifferentiated spermatogonia, and plays a role in cell proliferation from the spermatogonial stage to the meiotic prophase in spermatogenesis, but not in meiotic divisions per se. [source]


    Ribosome-inactivating proteins isolated from dietary bitter melon induce apoptosis and inhibit histone deacetylase-1 selectively in premalignant and malignant prostate cancer cells

    INTERNATIONAL JOURNAL OF CANCER, Issue 4 2009
    Su Dao Xiong
    Abstract Epidemiologic evidence suggests that a diet rich in fruits and vegetables is associated with a reduced risk of prostate cancer (PCa) development. Although several dietary compounds have been tested in preclinical PCa prevention models, no agents have been identified that either prevent the progression of premalignant lesions or treat advanced disease. Momordica charantia, known as bitter melon in English, is a plant that grows in tropical areas worldwide and is both eaten as a vegetable and used for medicinal purposes. We have isolated a protein, designated as MCP30, from bitter melon seeds. The purified fraction was verified by SDS-PAGE and mass spectrometry to contain only 2 highly related single chain Type I ribosome-inactivating proteins (RIPs), ,-momorcharin and ,-momorcharin. MCP30 induces apoptosis in PIN and PCa cell lines in vitro and suppresses PC-3 growth in vivo with no effect on normal prostate cells. Mechanistically, MCP30 inhibits histone deacetylase-1 (HDAC-1) activity and promotes histone-3 and -4 protein acetylation. Treatment with MCP30 induces PTEN expression in a prostatic intraepithelial neoplasia (PIN) and PCa cell lines resulting in inhibition of Akt phosphorylation. In addition, MCP30 inhibits Wnt signaling activity through reduction of nuclear accumulation of ,-catenin and decreased levels of c- Myc and Cyclin-D1. Our data indicate that MCP30 selectively induces PIN and PCa apoptosis and inhibits HDAC-1 activity. These results suggest that Type I RIPs derived from plants are HDAC inhibitors that can be utilized in the prevention and treatment of prostate cancer. © 2009 UICC [source]


    MYCN regulates oncogenic MicroRNAs in neuroblastoma

    INTERNATIONAL JOURNAL OF CANCER, Issue 3 2008
    Johannes H. Schulte
    Abstract MYCN amplification is a common feature of aggressive tumour biology in neuroblastoma. The MYCN transcription factor has been demonstrated to induce or repress expression of numerous genes. MicroRNAs (miRNA) are a recently discovered class of short RNAs that repress translation and promote mRNA degradation by sequence-specific interaction with mRNA. Here, we sought to analyse the role of MYCN in regulation of miRNA expression. Using a miRNA microarray containing 384 different miRNAs and a set of 160 miRNA real-time PCR assays to validate the microarray results, 7 miRNAs were identified that are induced by MYCN in vitro and are upregulated in primary neuroblastomas with MYCN amplification. Three of the seven miRNAs belong to the miR-106a and miR-17 clusters, which have previously been shown to be regulated by c-Myc. The miR-17,92 polycistron also acts as an oncogene in haematopoietic progenitor cells. We show here that miR-221 is also induced by MYCN in neuroblastoma. Previous studies have reported miR-221 to be overexpressed in several other cancer entities, but its regulation has never before been associated with Myc. We present evidence of miRNA dysregulation in neuroblastoma. Additionally, we report miRNA induction to be a new mechanism of gene expression downregulation by MYCN. © 2007 Wiley-Liss, Inc. [source]


    Oncogene expression profiles in K6/ODC mouse skin and papillomas following a chronic exposure to monomethylarsonous acid,

    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 6 2009
    Don A. Delker
    Abstract We have previously observed that a chronic drinking water exposure to monomethylarsonous acid [MMA(III)], a cellular metabolite of inorganic arsenic, increases tumor frequency in the skin of keratin VI/ornithine decarboxylase (K6/ODC) transgenic mice. To characterize gene expression profiles predictive of MMA(III) exposure and mode of action of carcinogenesis, skin and papilloma RNA was isolated from K6/ODC mice administered 0, 10, 50, and 100 ppm MMA(III) in their drinking water for 26 weeks. Following RNA processing, the resulting cRNA samples were hybridized to Affymetrix Mouse Genome 430A 2.0 GeneChips®. Micoarray data were normalized using MAS 5.0 software, and statistically significant genes were determined using a regularized t -test. Significant changes in bZIP transcription factors, MAP kinase signaling, chromatin remodeling, and lipid metabolism gene transcripts were observed following MMA(III) exposure as determined using the Database for Annotation, Visualization and Integrated Discovery 2.1 (DAVID) (Dennis et al., Genome Biol 2003;4(5):P3). MMA(III) also caused dose-dependent changes in multiple Rho guanine nucleotide triphosphatase (GTPase) and cell cycle related genes as determined by linear regression analyses. Observed increases in transcript abundance of Fosl1, Myc, and Rac1 oncogenes in mouse skin support previous reports on the inducibility of these oncogenes in response to arsenic and support the relevance of these genomic changes in skin tumor induction in the K6/ODC mouse model. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:406,418, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20304 [source]


    Improving the interaction of Myc-interfering peptides with Myc using molecular dynamics simulations

    JOURNAL OF PEPTIDE SCIENCE, Issue 1 2009
    Eva M. Jouaux
    Abstract Previously, a Myc-interfering peptide (Mip) was identified for the targeted inactivation of the Myc:Max complex by the combination of rational design and an in vivo protein-fragment complementation assay. In the subsequent work presented here, molecular dynamics simulations and free energy calculations based on the molecular mechanics GBSA method were performed to define the contribution of the different amino acids in the Myc:Mip coiled coil domain, and compared to wild-type Myc:Max. For further optimization of the Myc interference, point mutations were introduced into Mip and analyzed, from which two showed much higher binding affinities in the computational studies in good agreement with the experiment. These mutants with very high potential for inactivation of Myc can now be used as starting point for further optimizations based on the computational as well as experimental protocols presented here. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. [source]


    Targeting the c-Myc coiled coil with interfering peptides

    JOURNAL OF PEPTIDE SCIENCE, Issue 9 2008
    Eva M. Jouaux
    Abstract c-Myc is one of the most frequently deregulated oncogenes in human cancers, and recent studies showed that even brief inactivation of Myc can be sufficient to induce tumor regression or loss. Consequently, inactivation of Myc provides a novel therapeutic opportunity and challenge, as the dimerization of Myc with Max is crucial for its function. We applied two strategies to specifically target this coiled coil mediated interaction with interfering peptides: a dominant-negative human Max sequence (Max) and a peptide selected from a genetic library (Mip). Both peptides form coiled coils and were fused to an acidic extension interacting with the basic DNA-binding region of human Myc. The genetic library was obtained by semi-rational design randomizing residues important for interaction, and selection was carried out using a protein-fragment complementation assay. The peptides Max and Mip easily outcompeted the human Myc:Max interaction and successfully interfered with the DNA binding of the complex. Both interfering peptides exhibited higher Tm (,Tm = 13 and 15 °C) upon interaction with Myc compared to wt Max. The inhibitory effect of the two interfering peptides on human Myc:Max activity makes them promising molecules for analytical and therapeutic Myc-directed research. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. [source]


    Upregulation of ,-Catenin Levels in Superior Frontal Cortex of Chronic Alcoholics

    ALCOHOLISM, Issue 6 2008
    Ali M. Al-Housseini
    Background:, Chronic and excessive alcohol misuse results in neuroadaptive changes in the brain. The complex nature of behavioral, psychological, emotional, and neuropathological characteristics associated with alcoholism is likely a reflection of the network of proteins that are affected by alcohol-induced gene expression patterns in specific brain regions. At the molecular level, however, knowledge remains limited regarding alterations in protein expression levels affected by chronic alcohol abuse. Thus, novel techniques that allow a comprehensive assessment of this complexity will enable the simultaneous assessment of changes across a group of proteins in the relevant neural circuitry. Methods:, A proteomics analysis was performed using antibody microarrays to determine differential protein levels in superior frontal cortices between chronic alcoholics and age- and gender-matched control subjects. Seventeen proteins related to the catenin signaling pathway were analyzed, including ,-, ,-, and ,-catenins, their upstream activators cadherin-3 (type I cadherin) and cadherin-5 (type II cadherin), and 5 cytoplasmic regulators c-Src, CK1,, GSK-3,, PP2A-C,, and APC, as well as the nuclear complex partner of ,-catenin CBP and 2 downstream genes Myc and cyclin D1. ILK, G,1, G,1, and G,2, which are activity regulators of GSK-3,, were also analyzed. Results:, Both ,- and ,-catenin showed significantly increased levels, while ,-catenin did not change significantly, in chronic alcoholics. In addition, the level of the ,-catenin downstream gene product Myc was significantly increased. Average levels of the catenin regulators c-Src, CK1,, and APC were also increased in chronic alcoholics, but the changes were not statistically significant. Conclusion:, Chronic and excessive alcohol consumption leads to an upregulation of ,- and ,-catenin levels, which in turn increase downstream gene expressions such as Myc that is controlled by ,-catenin signaling. This study showed that the ,-catenin signal transduction pathway was upregulated by chronic alcohol abuse, and prompts further investigation of mechanisms underlying the upregulation of ,- and ,-catenins in alcoholism, which may have considerable pathogenic and therapeutic relevance. [source]


    Preparation of enzymatically active human Myc-tagged-NCre recombinase exhibiting immunoreactivity with anti-Myc antibody

    MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 11 2006
    Satoshi Watanabe
    Abstract The Cre- loxP system has been recognized as a tool for conditional gene targeting in mice. However, most anti-Cre antibodies fail to react with Cre expressed in vivo. In an attempt to directly detect Cre by antibodies in vivo, we constructed the tagged-NCre (NCreMH) gene by connecting the human Myc and His tag sequences to the 3, end of the NCre gene carrying a nuclear localizing signal (NLS) sequence. The production of NCre protein and the recombinase activity were detected after co-transfection with pCMV-NCreMH and pCETZ-17 carrying the loxP -flanked lacZ gene into NIH3T3 cells. This activity was also confirmed in vivo after gene transfer of pCMV-NCreMH and pCRTEIL-6 carrying loxP -flanked HcRed1 and EGFP cDNAs, into oviductal epithelium by electroporation. Immunohistochemical staining using anti-Myc antibody demonstrated that the area positive for enhanced green fluorescent protein (EGFP) fluorescence was immunostained with the antibody. These findings indicate that NCreMH is useful as an alternative to NCre for gene targeting. Mol. Reprod. Dev. 73: 1345,1352, 2006. © 2006 Wiley-Liss, Inc. [source]


    Inhibition of Aurora Kinase A enhances chemosensitivity of medulloblastoma cell lines,

    PEDIATRIC BLOOD & CANCER, Issue 1 2010
    Ayman El-Sheikh MD
    Abstract Background Medulloblastoma comprises approximately 20% of all primary pediatric brain tumors. Despite recent advances, the survival rate for high-risk patients and the morbidity associated with these treatments remains suboptimal. To improve outcomes and decrease morbidity, more targeted therapy is required. One possible target is the Aurora Kinase family. The objective of this study was to evaluate the impact of Aurora Kinase A inhibition in medulloblastoma cell lines. Procedure Cell proliferation was measured using an MTS assay after adding an Aurora Kinase inhibitor (C1368) at different concentrations. Cell cycle analysis was carried out by Flow Cytometry using propidium iodide (PI). RNAi experiments were performed using siRNA oligonucleotides. Luciferase experiments were carried out using the Cignal Finder 10 Pathway Reporter Arrays. Results Inhibition of Aurora Kinase A induces cell death in medulloblastoma cells and lowers the IC50 of other chemotherapeutic agents (etoposide and cisplatin) used in medulloblastoma treatment. Cell arrest at G2/M phase was significantly increased in medulloblastoma cell lines treated with C1368 Sigma at IC30 or transfected siRNA. Inhibition of Aurora Kinase A resulted in decreased activity of pro-proliferative signaling pathways including Wnt, Myc, and RB as measured by luciferase reporter assays. Conclusions These data indicate that inhibition of Aurora Kinase A inhibits cell growth in medulloblastoma through inhibition of pro-proliferative signaling pathways Wnt, Myc, and RB. Additionally, combining Aurora Kinase A inhibition with other chemotherapeutic agents significantly lowers their IC50, which make it a promising small molecule target for medulloblastoma therapy. Pediatr Blood Cancer 2010;55:35,41. © 2010 Wiley-Liss, Inc. [source]


    Genome-wide profiling of oral squamous cell carcinoma

    THE JOURNAL OF PATHOLOGY, Issue 3 2004
    Yann-Jang Chen
    Abstract Oral squamous cell carcinoma (OSCC) is a common malignancy, the incidence of which is particularly high in some Asian countries due to the geographically linked areca quid (AQ) chewing habit. In this study, array-based comparative genomic hybridization was used to screen microdissected OSCCs for genome-wide alterations. The highest frequencies of gene gain were detected for TP63, Serpine1, FGF4/FGF3, c- Myc and DMD. The highest frequencies of deletion were detected for Caspase8 and MTAP. Gained genes, classified by hierarchical clustering, were mainly on 17q21,tel; 20q; 11q13; 3q27,29 and the X chromosome. Among these, gains of EGFR at 7p, FGF4/FGF3, CCND1 and EMS1 at 11q13, and AIB1 at 20q were significantly associated with lymph node metastasis. The genomic profiles of FHIT and EXT1 in AQ-associated and non-AQ-associated OSCCs exhibited the most prominent differences. RT-PCR confirmed the significant increase of TP63 and Serpine1 mRNA expression in OSCC relative to non-malignant matched tissue. A significant increase in Serpine1 immunoreactivity was observed from non-malignant matched tissue to OSCC. However, there was no correlation between the frequent genomic loss of Caspase 8 and a significant decrease in Caspase8 expression. These data demonstrate that genomic profiling can be useful in analysing pathogenetic events involved in the genesis or progression of OSCC. Copyright © 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


    Molecular characterization of the G,-globin-Tag transgenic mouse model of hormone refractory prostate cancer: Comparison to human prostate cancer,

    THE PROSTATE, Issue 6 2010
    Alfonso Calvo
    Abstract BACKGROUND Prostate cancer (PrCa) has a high incidence in Western countries and at present, there is no cure for hormone refractory prostate cancer. Transgenic mouse models have proven useful for understanding mechanisms of prostate carcinogenesis. The characterization of genetically modified mouse PrCa models using high-throughput genomic analyses provides important information to guide appropriate experiment applications for such model. METHODS We have analyzed the transcriptome of the hormone refractory and highly metastatic Fetal Globin-SV40/T-antigen (G,-globin-Tag) transgenic mouse model for PrCa compared to normal mouse prostate tissue. Gene expression patterns found in G,-globin-Tag mouse prostate tumors were compared with publicly available human localized and metastatic prostate tumors (GEO accession # GSE3325) through hierarchical cluster analysis, Pearson's rank correlation coefficient, and Self Organizing Feature Maps (SOM) analyses. RESULTS G,-globin-Tag tumors clustered closely with human metastatic tumors and gene expression patterns had a significant correlation (P,<,0.01), unlike human localized primary tumors (P,>,0.6). Bioinformatic analyses identified deregulated genetic pathways and networks in G,-globin-Tag tumors, which displayed similarities to alterations in human PrCa. Changes in the expression of genes involved in DNA replication and repair (Rb1, p53, Myc, PCNA, DNMT3A) and growth factor signaling pathways (TGF,2, ERK1/2, NRas, and Notch1) are deregulated in the G,-globin-Tag tumors, suggesting their key role in the oncogenic process. Identification of an enrichment of putative binding sites for transcription factors revealed eight transcription factors that may be important in G,-globin-Tag carcinogenesis, including SP1, NF-Y, CREB, Elk1, and E2F. Novel genes related to microtubule regulation were also identified in G,-globin-Tag tumors as potentially important candidate targets for PrCa. Overexpression of stathmin-1, whose expression was increased in human metastatic prostate tumors, was validated in G,-globin-Tag tumors by immunohistochemistry. This protein belongs to the SV40/T-antigen cancer signature identified in previous studies in prostate, breast, and lung cancer mouse models. CONCLUSIONS Our results show that the G,-globin-Tag model for hormone refractory PrCa shares important features with aggressive, metastatic human PrCa. Given the role of stathmin-1 in the destabilization of microtubles and taxane resistance, the G,-globin-Tag model and other SV40/T-antigen driven transgenic models may be useful for testing potential therapies directed at stathmin-1 in human prostate tumors. Prostate 70: 630,645, 2010. Published 2010 Wiley-Liss, Inc. [source]


    C-myc as a modulator of renal stem/progenitor cell population

    DEVELOPMENTAL DYNAMICS, Issue 2 2009
    Martin Couillard
    Abstract The role of c - myc has been well-studied in gene regulation and oncogenesis but remains elusive in murine development from midgestation. We determined c - myc function during kidney development, organogenesis, and homeostasis by conditional loss of c - myc induced at two distinct phases of nephrogenesis, embryonic day (e) 11.5 and e17.5. Deletion of c - myc in early metanephric mesenchyme (e11.5) led to renal hypoplasia from e15.5 to e17.5 that was sustained until adulthood (range, 20,25%) and, hence, reproduced the human pathologic condition of renal hypoplasia. This phenotype resulted from depletion of c - myc,positive cells in cap mesenchyme, causing a ,35% marked decrease of Six2- and Cited1-stem/progenitor population and of proliferation that likely impaired self-renewal. By contrast, c - myc loss from e17.5 onward had no impact on late renal differentiation/maturation and/or homeostasis, providing evidence that c - myc is dispensable during these phases. This study identified c - myc as a modulator of renal organogenesis through regulation of stem/progenitor cell population. Developmental Dynamics 238:405,414, 2009. © 2009 Wiley-Liss, Inc. [source]


    Cell cycle deregulation in liver lesions of rats with and without genetic predisposition to hepatocarcinogenesis

    HEPATOLOGY, Issue 6 2002
    Rosa M. Pascale
    Preneoplastic and neoplastic hepatocytes undergo c-Myc up-regulation and overgrowth in rats genetically susceptible to hepatocarcinogenesis, but not in resistant rats. Because c-Myc regulates the pRb-E2F pathway, we evaluated cell cycle gene expression in neoplastic nodules and hepatocellular carcinomas (HCCs), induced by initiation/selection (IS) protocols 40 and 70 weeks after diethylnitrosamine treatment, in susceptible Fisher 344 (F344) rats, and resistant Wistar and Brown Norway (BN) rats. No interstrain differences in gene expression occurred in normal liver. Overexpression of c- myc, Cyclins D1, E, and A, and E2F1 genes, at messenger RNA (mRNA) and protein levels, rise in Cyclin D1-CDK4, Cyclin E-CDK2, and E2F1-DP1 complexes, and pRb hyperphosphorylation occurred in nodules and HCCs of F344 rats. Expression of Cdk4, Cdk2, p16INK4A, and p27KIP1 did not change. In nodules and/or HCCs of Wistar and BN rats, low or no increases in c- myc, Cyclins D1, E, and A, and E2F1 expression, and Cyclin-CDKs complex formation were associated with p16INK4A overexpression and pRb hypophosphorylation. In conclusion, these results suggest deregulation of G1 and S phases in liver lesions of susceptible rats and block of G1-S transition in lesions of resistant strains, which explains their low progression capacity. [source]


    8q24 Copy number gains and expression of the c- myc mRNA stabilizing protein CRD-BP in primary breast carcinomas

    INTERNATIONAL JOURNAL OF CANCER, Issue 1 2003
    Panayotis Ioannidis
    Abstract The coding region determinant binding protein (CRD-BP) was isolated by virtue of its high affinity to the c- myc mRNA coding region stability determinant and shown to shield this message from nucleolytic attack, prolonging its half-life. CRD-BP is normally expressed during fetal life but is also activated de novo in tumors. Considering that aberrant CRD-BP expression may represent an additional mechanism interfering with c- myc regulation, we screened 118 primary breast carcinomas for CRD-BP expression, 60 of which had also been analyzed by comparative genomic hybridization (CGH). Copy number gains encompassing 8q24, the chromosome band that contains the c- myc locus, were detected in 48.3% (29/60) of tumors, whereas gains involving band 17q21, which contains the CRD-BP locus, were observed in 18.3% (11/60) of tumors. CRD-BP expression was detected in 58.5% (69/118) of tumors, implying mechanisms of activation alternative to gene amplification. Altogether, some 75% of the tumors had alterations pertaining to c- myc since they either harbored 8q24 gains and/or expressed CRD-BP. Significant associations were detected between CRD-BP expression and the absence of estrogen receptors (p = 0.005) and between the presence of 8q24 gains and an increased number of genomic changes as measured by CGH (p = 0.0017). Tumors were divided into 4 groups according to CRD-BP expression and 8q24 gains. The odds for tumors having both characteristics to be classified as poorly differentiated (grade III vs. grade I and II) were 19.6 times the corresponding odds for tumors neither expressing CRD-BP nor harboring 8q24 gains. For tumors either harboring 8q24 gains only or expressing CRD-BP alone, the corresponding odds were 6.4 and 3, respectively. © 2002 Wiley-Liss, Inc. [source]