Home About us Contact | |||
Multivariate Structure (multivariate + structure)
Selected AbstractsBayesian disclosure risk assessment: predicting small frequencies in contingency tablesJOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C (APPLIED STATISTICS), Issue 5 2007Jonathan J. Forster Summary., We propose an approach for assessing the risk of individual identification in the release of categorical data. This requires the accurate calculation of predictive probabilities for those cells in a contingency table which have small sample frequencies, making the problem somewhat different from usual contingency table estimation, where interest is generally focused on regions of high probability. Our approach is Bayesian and provides posterior predictive probabilities of identification risk. By incorporating model uncertainty in our analysis, we can provide more realistic estimates of disclosure risk for individual cell counts than are provided by methods which ignore the multivariate structure of the data set. [source] A review of forecast error covariance statistics in atmospheric variational data assimilation.THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 637 2008I: Characteristics, measurements of forecast error covariances Abstract This article reviews the characteristics of forecast error statistics in meteorological data assimilation from the substantial literature on this subject. It is shown how forecast error statistics appear in the data assimilation problem through the background error covariance matrix, B. The mathematical and physical properties of the covariances are surveyed in relation to a number of leading systems that are in use for operational weather forecasting. Different studies emphasize different aspects of B, and the known ways that B can impact the assimilation are brought together. Treating B practically in data assimilation is problematic. One such problem is in the numerical measurement of B, and five calibration methods are reviewed, including analysis of innovations, analysis of forecast differences and ensemble methods. Another problem is the prohibitive size of B. This needs special treatment in data assimilation, and is covered in a companion article (Part II). Examples are drawn from the literature that show the univariate and multivariate structure of the B -matrix, in terms of variances and correlations, which are interpreted in terms of the properties of the atmosphere. The need for an accurate quantification of forecast error statistics is emphasized. Copyright © 2008 Royal Meteorological Society [source] ELICITING A DIRECTED ACYCLIC GRAPH FOR A MULTIVARIATE TIME SERIES OF VEHICLE COUNTS IN A TRAFFIC NETWORKAUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, Issue 3 2007Catriona M. Queen Summary The problem of modelling multivariate time series of vehicle counts in traffic networks is considered. It is proposed to use a model called the linear multiregression dynamic model (LMDM). The LMDM is a multivariate Bayesian dynamic model which uses any conditional independence and causal structure across the time series to break down the complex multivariate model into simpler univariate dynamic linear models. The conditional independence and causal structure in the time series can be represented by a directed acyclic graph (DAG). The DAG not only gives a useful pictorial representation of the multivariate structure, but it is also used to build the LMDM. Therefore, eliciting a DAG which gives a realistic representation of the series is a crucial part of the modelling process. A DAG is elicited for the multivariate time series of hourly vehicle counts at the junction of three major roads in the UK. A flow diagram is introduced to give a pictorial representation of the possible vehicle routes through the network. It is shown how this flow diagram, together with a map of the network, can suggest a DAG for the time series suitable for use with an LMDM. [source] Geostatistics in fisheries survey design and stock assessment: models, variances and applicationsFISH AND FISHERIES, Issue 3 2001Pierre Petitgas Abstract Over the past 10 years, fisheries scientists gradually adopted geostatistical tools when analysing fish stock survey data for estimating population abundance. First, the relation between model-based variance estimates and covariance structure enabled estimation of survey precision for non-random survey designs. The possibility of using spatial covariance for optimising sampling strategy has been a second motive for using geostatistics. Kriging also offers the advantage of weighting data values, which is useful when sample points are clustered. This paper discusses, with fisheries applications, the different geostatistical models that characterise spatial variation, and their variance formulae for many different survey designs. Some anticipated developments of geostatistics related to multivariate structures, temporal variability and adaptive sampling are discussed. [source] |