Multipolar Spindles (multipolar + spindle)

Distribution by Scientific Domains


Selected Abstracts


TOGp regulates microtubule assembly and density during mitosis and contributes to chromosome directional instability

CYTOSKELETON, Issue 8 2009
Lynne Cassimeris
Abstract TOGp, a member of the XMAP215 MAP family, is required for bipolar mitotic spindle assembly. To understand how TOGp contributes to spindle assembly, we examined microtubule dynamics after depleting TOGp by siRNA. Fluorescence recovery after photobleaching of GFP-tubulin demonstrated that spindle microtubule turnover is slowed two-fold in the absence of TOGp. Consistent with photobleaching results, microtubule regrowth after washout of the microtubule depolymerizing drug nocodazole was slower at the centrosomes and in the vicinity of mitotic chromatin in cells depleted of TOGp. The slower microtubule turnover is likely due to either nucleation or the transitions of dynamic instability because TOGp depletion did not effect the rate of plus end growth, measured by tracking EB1-GFP at microtubule ends. In contrast, microtubule regrowth after nocodazole washout was unaffected by prior depletion of TACC3, a centrosomal protein that interacts with TOGp. Kinetochore fibers in both untreated and TOGp-depleted cells were stable to incubation at 4°C or lysis in buffer containing calcium indicating that stable kinetochore-microtubule attachments are formed in the absence of TOGp. Depletion of TOGp, but not TACC3, reduced kinetochore oscillations during prometaphase/metaphase. Defects in oscillations are not due simply to multipolarity or loss of centrosome focus in the TOGp-depleted cells, since kinetochore oscillations appear normal in cells treated with the proteosome inhibitor MG132, which also results in multipolar spindles and centrosome fragmentation. We hypothesize that TOGp is required for chromosome motility as a downstream consequence of reduced microtubule dynamics and/or density. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


Live-cell analysis of mitotic spindle formation in taxol-treated cells

CYTOSKELETON, Issue 8 2008
Jessica E. Hornick
Abstract Taxol functions to suppress the dynamic behavior of individual microtubules, and induces multipolar mitotic spindles. However, little is known about the mechanisms by which taxol disrupts normal bipolar spindle assembly in vivo. Using live imaging of GFP-, tubulin expressing cells, we examined spindle assembly after taxol treatment. We find that as taxol-treated cells enter mitosis, there is a dramatic re-distribution of the microtubule network from the centrosomes to the cell cortex. As they align there, the cortical microtubules recruit NuMA to their embedded ends, followed by the kinesin motor HSET. These cortical microtubules then bud off to form cytasters, which fuse into multipolar spindles. Cytoplasmic dynein and dynactin do not re-localize to cortical microtubules, and disruption of dynein/dynactin interactions by over-expression of p50 "dynamitin" does not prevent cytaster formation. Taxol added well before spindle poles begin to form induces multipolarity, but taxol added after nascent spindle poles are visible,but before NEB is complete,results in bipolar spindles. Our results suggest that taxol prevents rapid transport of key components, such as NuMA, to the nascent spindle poles. The net result is loss of mitotic spindle pole cohesion, microtubule re-distribution, and cytaster formation. Cell Motil. Cytoskeleton 2008. © 2008 Wiley-Liss, Inc. [source]


Potential roles of the nucleotide exchange factor ECT2 and Cdc42 GTPase in spindle assembly in Xenopus egg cell-free extracts,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2003
Takashi Tatsumoto
Abstract The ECT2 protooncogene encodes a guanine nucleotide exchange factor for the Rho family of small GTPases. ECT2 contains motifs of cell cycle regulators at its N-terminal domain. We previously showed that ECT2 plays a critical role in cytokinesis. Here, we report a potential role of XECT2, the Xenopus homologue of the human ECT2, in spindle assembly in cell-free Xenopus egg extracts. Cloned XECT2 cDNA encodes a 100 kDa protein closely related to human ECT2. XECT2 is specifically phosphorylated in M phase extracts. Affinity-purified anti-XECT2 antibody strongly inhibited mitosis in Xenopus cell-free extracts. Instead of bipolar spindles, where chromosomes are aligned at the metaphase plane in control extracts, the addition of anti-XECT2 resulted in the appearance of abnormal spindles including monopolar and multipolar spindles as well as bipolar spindles with misaligned chromosomes. In these in vitro synthesized spindle structures, XECT2 was found to tightly associate with mitotic spindles. The N-terminal half of XECT2 lacking the catalytic domain also strongly inhibited spindle assembly in vitro, resulting in the formation of mitotic spindles with a low density. Among the representative Rho GTPases, a dominant-negative form of Cdc42 strongly inhibited spindle assembly in vitro. These results suggest that the Rho family GTPase Cdc42 and its exchange factor XECT2 are critical regulators of spindle assembly in Xenopus egg extracts. Published 2003 Wiley-Liss, Inc., [source]


Spindle pole fragmentation due to proteasome inhibition

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005
Anka G. Ehrhardt
During interphase, the centrosome concentrates cell stress response molecules, including chaperones and proteasomes, into a proteolytic center. However, whether the centrosome functions as proteolytic center during mitosis is not known. In this study, cultured mammalian cells were treated with the proteasome inhibitor MG 132 and spindle morphology in mitotic cells was characterized in order to address this issue. Proteasome inhibition during mitosis leads to the formation of additional asters that cause the assembly of multipolar spindles. The cause of this phenomenon was investigated by inhibiting microtubule-based transport and protein synthesis. These experimental conditions prevented the formation of supernumerary asters during mitosis. In addition, the expression of dsRed without proteasome inhibition led to the fragmentation of spindle poles. These experiments showed that the formation of extra asters depends on intact microtubule-based transport and protein synthesis. These results suggest that formation of supernumerary asters is due to excessive accumulation of proteins at the spindle poles and consequently fragmentation of the centrosome. Together, this leads to the conclusion that the centrosome functions as proteolytic center during mitosis and proteolytic activity at the spindle poles is necessary for maintaining spindle pole integrity. © 2005 Wiley-Liss, Inc. [source]


Ultrasound-induced modifications of cytoskeletal components in osteoblast-like SAOS-2 cells

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2009
Joerg Hauser
Abstract In clinical and experimental studies an acceleration of fracture healing and increased callus formation induced by low-intensity pulsed ultrasound (LIPUS) has been demonstrated. The exact molecular mechanisms of ultrasound treatment are still unclear. In this study ultrasound transmitted cytoskeletal and growth rate changes of SAOS-2 cells were examined. Osteoblast-like cell lines (SAOS-2) were treated using low-intensity pulsed ultrasound. Cytoskeletal changes were analyzed using rhodamine phalloidine for f-actin staining and indirect immunofluorescence techniques with different monoclonal antibodies against several tubulin modifications. To examine changes of cell number after ultrasound treatment cell counts were done. Significant changes in cytoskeleton structure were detected compared to controls, including an enhancement of stress fiber formation combined with a loss of cell migration after ultrasound application. We further observed that sonication altered the proportion of the more stable microtubules to the more labile microtubule subclass. The labile tyrosinated microtubules appeared highly enhanced, whereas the amount of the more stable acetylated microtubules was remarkably diminished. All these observations were quantified by fluorometric measurements. The centrosomal ,-tubulin was frequently scattered throughout the cell's cytoplasm, giving rise to additional polyglu-positive microtubular asters, which induced multipolar spindles, leading either to aneuploid mini-or giant cells. Moreover, a significant increase of cell number was noticed in the sonicated group. These experiments demonstrate that ultrasound treatment increases cell number and leads to significant changes of the cytoskeletal structure and composition in vitro. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:286,294, 2009 [source]