Multiple Traits (multiple + trait)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Intra- and Intersexual Selection for Multiple Traits in the Peacock (Pavo cristatus)

ETHOLOGY, Issue 9 2005
Adeline Loyau
Animal communication involves a multitude of signals ranging from morphological to behavioural traits. In spite of the diversity of traits used in animal signalling, most studies of sexual selection have focused on single male traits. Moreover, the two forces of sexual selection (male,male competition and female preference) may target different traits and favour the diversification of male signalling. Still, little is known on the combined effects of intra- and intersexual selection on the evolution of multiple signals. The peacock is often cited as one of the best examples of the strength of sexual selection in producing exaggerated traits. Here, we investigated traits under intra- and intersexual selection in a population of free-ranging common peafowl. Peacocks with longer trains and tarsi were more likely to establish a display territory in a central position within the lek and had a higher number of intrusions and agonistic interactions. These traits appeared therefore to be under intrasexual selection. Female selection was assessed as the number of copulations. Mating success was positively correlated with behavioural traits (display activity) and with train ornamentation (number and density of ocelli) suggesting that females use multiple cues during mate selection. Therefore, intra- and intersexual selection seem to operate on different sets of traits. Overall, our results stress the role of multiple receivers on the evolution of multiple signals. [source]


SEXUAL SELECTION, GENETIC ARCHITECTURE, AND THE CONDITION DEPENDENCE OF BODY SHAPE IN THE SEXUALLY DIMORPHIC FLY PROCHYLIZA XANTHOSTOMA (PIOPHILIDAE)

EVOLUTION, Issue 1 2005
Russell Bonduriansky
Abstract The hypothesis that sexual selection drives the evolution of condition dependence is not firmly supported by empirical evidence, and the process remains poorly understood. First, even though sexual competition typically involves multiple traits, studies usually compare a single sexual trait with a single "control" trait, ignoring variation among sexual traits and raising the possibility of sampling bias. Second, few studies have addressed the genetic basis of condition dependence. Third, even though condition dependence is thought to result from a form of sex-specific epistasis, the evolution of condition dependence has never been considered in relation to intralocus sexual conflict. We argue that condition dependence may weaken intersexual genetic correlations and facilitate the evolution of sexual dimorphism. To address these questions, we manipulated an environmental factor affecting condition (larval diet) and examined its effects on four sexual and four nonsexual traits in Prochyliza xanthostoma adults. As predicted by theory, the strength of condition dependence increased with degree of exaggeration among male traits. Body shape was more condition dependent in males than in females and, perhaps as a result, genetic and environmental effects on body shape were congruent in males, but not in females. However, of the four male sexual traits, only head length was significantly larger in high-condition males after controlling for body size. Strong condition dependence was associated with reduced intersexual genetic correlation. However, homologous male and female traits exhibited correlated responses to condition, suggesting an intersexual genetic correlation for condition dependence itself. Our findings support the role of sexual selection in the evolution of condition dependence, but reveal considerable variation in condition dependence among sexual traits. It is not clear whether the evolution of condition dependence has mitigated or exacerbated intralocus sexual conflict in this species. [source]


Developmental, metabolic and immunological costs of flea infestation in the common vole

FUNCTIONAL ECOLOGY, Issue 6 2008
Godefroy Devevey
Summary 1Parasites use resources from their hosts, which can indirectly affect a number of host functions because of trade-offs in resource allocation. In order to get a comprehensive view of the costs imposed by blood sucking parasites to their hosts, it is important to monitor multiple components of the development and physiology of parasitized hosts over long time periods. 2The effect of infestation by fleas on body mass, body length growth, haematocrit, resistance to oxidative stress, resting metabolic rate and humoral immune response were experimentally evaluated. During a 3-month period, male common voles, Microtus arvalis, were either parasitized by rat fleas (Nosopsyllus fasciatus), which are naturally occurring generalist ectoparasites of voles, or reared without fleas. Then voles were challenged twice by injecting Keyhole Limpet Haemocyanin (KLH) to assess whether the presence of fleas affects the ability of voles to produce antibodies against a novel antigen. During the immune challenge we measured the evolution of body mass, haematocrit, resistance to oxidative stress and antibody production. 3Flea infestation negatively influenced the growth of voles. Moreover, parasitized voles had reduced haematocrit, higher resting metabolic rate and lower production of antibodies against the KLH. Resistance to oxidative stress was not influenced by the presence of fleas. 4During the immune challenge with KLH, body mass decreased in both groups, while the resistance to oxidative stress remained stable. In contrast, the haematocrit decreased only in parasitized voles. 5Our experiment shows that infestation by a haematophageous parasite negatively affects multiple traits like growth, energy consumption and immune response. Fleas may severely reduce the survival probability and reproductive success of their host in natural conditions. [source]


Macroecology, global change and the shadow of forgotten ancestors

GLOBAL ECOLOGY, Issue 1 2008
José Alexandre Felizola Diniz-Filho
ABSTRACT Many recent studies have evaluated how global changes will affect biodiversity, and have mainly focused on how to develop conservation strategies to avoid, or at least minimize, extinctions due to shifts in suitable habitats for the species. However, these complex potential responses might be in part structured in phylogeny, because of the macroecological traits underlying them. In this comment, we review recent analytical developments in phylogenetic comparative methods that can be used to understand patterns of trait changes under environmental change. We focus on a partial regression approach that allows for partitioning the variance of traits into a fraction attributed to a pure ecological component, a fraction attributed to phylogenetically structured environmental variation (niche conservatism) and a fraction that may be attributed to phylogenetic effects only. We then develop a novel interpretation for linking these components for multiple traits with potential responses of species to global environmental change (i.e. adaptation, range shifts or extinctions). We hope that this interpretation will stimulate further research linking evolutionary components of multiple traits with broad-scale environmental changes. [source]


Manipulating rearing conditions reveals developmental sensitivity in the smaller sex of a passerine bird, the European starling Sturnus vulgaris

JOURNAL OF AVIAN BIOLOGY, Issue 5 2007
Eloise Rowland
Traditionally, studies of sexually size-dimorphic birds and mammals report that the larger sex is more sensitive to adverse environmental conditions during ontogeny. However, recent studies in avian species that exhibit moderate size-dimorphism indicate that the smaller sex may be more sensitive to poor rearing conditions. To better understand sex-specific sensitivity in a passerine exhibiting moderate size-dimorphism, we examined growth, cell-mediated immunity (CMI) and survival of European starling Sturnus vulgaris nestlings following an experimental reduction of maternal rearing ability (via a feather-clipping manipulation). Contrary to conventional theory, daughters showed reduced growth in both body mass and measures of structural size in response to the maternal treatment. In contrast, sons showed no reductions in any of these traits in relation to the treatment. No sex-specific differences in nestling CMI were found for either group, although CMI of nestlings raised by manipulated mothers were higher than those of control nestlings. Finally, fledging sex ratios did not change from those at hatching indicating that neither sex appeared differentially sensitive to the maternal treatment in terms of mortality. These results reveal that variation in the quality of the rearing environment can have significant effects on the smaller sex of a passerine exhibiting moderate dimorphism and as such support recent studies of species with small-moderate sexual size-dimorphism. Combined results suggest that sex-specific effects of environmental variation on nestling development may be both context- (i.e., brood size, resource level, hatching order) and temporally- (when during development they occur) specific. Furthermore, more studies are needed that examine multiple traits at several developmental stages and then follow the sexes over the longer-term to examine potential effects on fitness. [source]


A tale of two matrices: multivariate approaches in evolutionary biology

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2007
M. W. BLOWS
Abstract Two symmetric matrices underlie our understanding of microevolutionary change. The first is the matrix of nonlinear selection gradients (,) which describes the individual fitness surface. The second is the genetic variance,covariance matrix (G) that influences the multivariate response to selection. A common approach to the empirical analysis of these matrices is the element-by-element testing of significance, and subsequent biological interpretation of pattern based on these univariate and bivariate parameters. Here, I show why this approach is likely to misrepresent the genetic basis of quantitative traits, and the selection acting on them in many cases. Diagonalization of square matrices is a fundamental aspect of many of the multivariate statistical techniques used by biologists. Applying this, and other related approaches, to the analysis of the structure of , and G matrices, gives greater insight into the form and strength of nonlinear selection, and the availability of genetic variance for multiple traits. [source]


THE USE OF NEAR INFRARED REFLECTANCE SPECTROMETRY FOR CHARACTERIZATION OF BROWN ALGAL TISSUE,

JOURNAL OF PHYCOLOGY, Issue 5 2010
Kyra B. Hay
Measuring qualitative traits of plant tissue is important to understand how plants respond to environmental change and biotic interactions. Near infrared reflectance spectrometry (NIRS) is a cost-, time-, and sample-effective method of measuring chemical components in organic samples commonly used in the agricultural and pharmaceutical industries. To assess the applicability of NIRS to measure the ecologically important tissue traits of carbon, nitrogen, and phlorotannins (secondary metabolites) in brown algae, we developed NIRS calibration models for these constituents in dried Sargassum flavicans (F. K. Mertens) C. Agardh tissue. We then tested if the developed NIRS models could detect changes in the tissue composition of S. flavicans induced by experimental manipulation of temperature and nutrient availability. To develop the NIRS models, we used partial least squares regression to determine the statistical relationship between trait values determined in laboratory assays and the NIRS spectral data of S. flavicans calibration samples. Models with high predictive power were developed for all three constituents that successfully detected changes in carbon, nitrogen, and phlorotannin content in the experimentally manipulated S. flavicans tissue. Phlorotannin content in S. flavicans was inversely related to nitrogen availability, and nitrogen, temperature, and tissue age interacted to significantly affect phlorotannin content, demonstrating the importance of studies that investigate these three variables simultaneously. Given the speed of analysis, accuracy, small tissue requirements, and ability to measure multiple traits simultaneously without consuming the sample tissue, NIRS is a valuable alternative to traditional methods for determining algal tissue traits, especially in studies where tissue is limited. [source]


The role of hybridization in evolution

MOLECULAR ECOLOGY, Issue 3 2001
N. H. Barton
Abstract Hybridization may influence evolution in a variety of ways. If hybrids are less fit, the geographical range of ecologically divergent populations may be limited, and prezygotic reproductive isolation may be reinforced. If some hybrid genotypes are fitter than one or both parents, at least in some environments, then hybridization could make a positive contribution. Single alleles that are at an advantage in the alternative environment and genetic background will introgress readily, although such introgression may be hard to detect. ,Hybrid speciation', in which fit combinations of alleles are established, is more problematic; its likelihood depends on how divergent populations meet, and on the structure of epistasis. These issues are illustrated using Fisher's model of stabilizing selection on multiple traits, under which reproductive isolation evolves as a side-effect of adaptation in allopatry. This confirms a priori arguments that while recombinant hybrids are less fit on average, some gene combinations may be fitter than the parents, even in the parental environment. Fisher's model does predict heterosis in diploid F1s, asymmetric incompatibility in reciprocal backcrosses, and (when dominance is included) Haldane's Rule. However, heterosis arises only when traits are additive, whereas the latter two patterns require dominance. Moreover, because adaptation is via substitutions of small effect, Fisher's model does not generate the strong effects of single chromosome regions often observed in species crosses. [source]


What's good for you may be good for me: evidence for adaptive introgression of multiple traits in wild sunflower

NEW PHYTOLOGIST, Issue 1 2010
Xavier Vekemans
First page of article [source]


Differences in pollinator faunas may generate geographic differences in floral morphology and integration in Narcissus papyraceus (Amaryllidaceae)

OIKOS, Issue 11 2007
Rocío Pérez-Barrales
Pollinators may generate selective pressures that affect covariation patterns of multiple traits as well as the mean values of single floral morphological traits. Berg predicted that flowers pollinated by animals whose morphology closely matches the flower's shape will be phenotypically more integrated (tighter correlation of flower traits) than will flowers pollinated by animals not closely fitting the floral morphology. We tested this hypothesis by comparing, in the Strait of Gibraltar region (south Spain, northern Morocco), populations of Narcissus papyraceus that have geographical differences in pollinator faunas. Long-tongued, nectar-feeding moths dominate the pollinator faunas of those populations close to the Strait of Gibraltar, whereas short-tongued, pollen-feeding syrphid flies dominate in peripheral populations farther from the Strait. Populations pollinated by moths and flies differed in the mean values of several floral traits, consistent with the evolution of regional pollination ecotypes. Populations pollinated by moths showed stronger intercorrelation (floral integration) than populations pollinated by hoverflies. Moth-pollinated populations also showed less variation in flower traits than vegetative traits, and this difference was stronger than in fly-pollinated populations. Thus, the pattern of differences in the phenotypic architecture of the Narcissus flowers is consistent with the hypothesis that populations have responded to different selective pressures generated by different pollinators. These data also supported most of the specific predictions of Berg's hypotheses about integration and modularity. [source]


Discovery and transmission of functional QTL in the pedigree of an elite soybean cultivar Suinong14

PLANT BREEDING, Issue 3 2010
J. Qin
With 3 figures and 5 tables Abstract In this study, we extended in silico mapping for single trait to analyse data from multiple environments by calculating intraclass correlations and to mapping pleiotropic QTL for multiple traits by defining new statistic to measure the correlation between multiple traits and the marker. Data sets include phenotypes of eight agronomic traits obtained from six different ecologic environments and years, and genotypic information from 477 polymorphic markers on 14 ancestral lines in the pedigree of ,Suinong14'. With in silico mapping, a total of 39 markers distributed on 14 linkage groups are detected as QTL responsible for eight agronomic traits and 10 QTL are identified as having pleiotropic effects. Tracing transmission of functional QTL in the pedigree indicated that certain QTL, such as Sat_036 on linkage group D1a, Satt182 on linkage group L, and Satt726 on linkage group B2 may be responsible for the contribution of exotic germplasm to the improved cultivars. [source]


A genetic linkage map of Vigna vexillata

PLANT BREEDING, Issue 4 2005
E. A. Ogundiwin
Abstract Vigna vexillata is a wild cross-incompatible relative of cowpea. It is highly resistant to several diseases and pests plaguing cowpea. A linkage map was developed for V. vexillata comprising 120 markers, including 70 random amplified polymorphic DNAs, 47 amplified fragment length polymorphisms, one simple sequence repeat and two morphological traits namely, the cowpea mottle carmovirus resistance locus (CPMo V) and leaf shape (La), utilizing an F2 generation of the intra-specific cross Tvnu 1443'× Tvnu 73,. The genetic map comprised 14 linkage groups spanning 1564.1 cM of the genome. Thirty-nine quantitative trait loci (QTLs) associated with nine traits were detected on the linkage map, explaining between 15.62 and 66.58% of their phenotypic variation. Seven chromosomal intervals contained QTLs with effects on multiple traits. [source]


Integrating molecular genetic technology with traditional approaches for genetic improvement in aquaculture species

AQUACULTURE RESEARCH, Issue 1 2000
G P. Davis
Genetic improvement of aquaculture species offers a substantial opportunity for increased production efficiency, health, product quality and, ultimately, profitability in aquacultural enterprises. Technolo-gies exist that can be implemented immediately to improve multiple traits that have economic value, while simultaneously accounting for inbreeding effects. Genetic improvement techniques for delivering genetic gain include formal definition of the breeding objective, estimation of genetic parameters that describe populations and their differences, evaluation of additive and non-additive genetic merit of individuals or families and defining the structure of a breeding programme in terms of mating plans. Novel genetic technologies involving the use of DNA-based tools are also under development for a range of aquaculture species. These gene marker technologies can be used for identification and monitoring of lines, families and individuals, monitoring and control of inbreeding, diagnosis of simply inherited traits and genetic improvement through selection for favourable genes and gene combinations. The identification of quantitative trait loci (QTL), and direct or linked markers for them, will facilitate marker-assisted selection in aquaculture species, enabling improvement in economically important traits, particularly those that are difficult to breed for, such as food conversion efficiency and disease resistance. [source]


Mild stress during development affects the phenotype of great tit Parus major nestlings: a challenge experiment

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2010
WILLEM TALLOEN
Conditions experienced during early development may affect both adult phenotype and performance later during life. Phenotypic traits may hence be used to indicate past growing conditions and predict future survival probabilities. Relationships between phenotypic markers and future survival are, however, highly heterogeneous, possibly because poor- and high-quality individuals cannot be morphologically discriminated when developing under good environmental conditions. Sub-optimal breeding conditions, in contrast, may unmask poor-quality individuals in a measurable way at the morphological level. We thus predict stronger associations between phenotype and performance under stress. In this field study, we test this hypothesis, experimentally challenging the homeostasis of great tit (Parus major) nestlings by short-term deprivation of parental care, which had no immediate effect on nestling fitness. The experiment was replicated during two subsequent breeding seasons with contrasting ambient weather conditions. Experimental (short-term) stress affected tarsus growth but not residual mass at fledging, whereas ambient (continuous) stress affected residual mass but not tarsus growth. Short-term stress effects on tarsus length and tarsus fluctuating asymmetry were only apparent when ambient conditions were unfavourable. Residual mass and hatching date, but none of the other phenotypic traits, predicted local survival, whereby the strength of the relationship did not vary between both years. Because effects of stress on developmental homeostasis are likely to be trait-specific and condition-dependent, studies on the use of phenotypic markers for individual fitness should integrate multiple traits comprising different levels of developmental complexity. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 103,110. [source]


Estimating a Multivariate Familial Correlation Using Joint Models for Canonical Correlations: Application to Memory Score Analysis from Familial Hispanic Alzheimer's Disease Study

BIOMETRICS, Issue 2 2009
Hye-Seung Lee
Summary Analysis of multiple traits can provide additional information beyond analysis of a single trait, allowing better understanding of the underlying genetic mechanism of a common disease. To accommodate multiple traits in familial correlation analysis adjusting for confounders, we develop a regression model for canonical correlation parameters and propose joint modeling along with mean and scale parameters. The proposed method is more powerful than the regression method modeling pairwise correlations because it captures familial aggregation manifested in multiple traits through maximum canonical correlation. [source]