Home About us Contact | |||
Multiple Spatial (multiple + spatial)
Terms modified by Multiple Spatial Selected AbstractsScience, systems and geomorphologies: why LESS may be moreEARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2008Keith Richards Abstract This paper has been stimulated by a debate triggered by the then British Geomorphological Research Group (now the British Society for Geomorphology) about the connections between geomorphology and Earth system science (ESS). Its purpose is to expand on some arguments we have already made about these connections, amongst other things drawing attention to neglected historical antecedents, and to the questionable status of the science implied by ESS. A premise of this further paper is that such a debate cannot be assumed to mirror conventional assessments of the content of a science, since it is about scientific institutional structures, names, boundaries and relationships. This implies that the terms of reference go well beyond critical scientific appraisal, extending to matters of evaluating a social organization, and to politics, policies, purposes and practices. We therefore begin by considering the sociology of science, scientific knowledge and technology, before moving to a consideration of the historical relationship amongst geomorphology, geology and physical geography; and to some perspectives this might offer for the current debate. Epistemological issues, arising both from the use of systems theory over multiple spatial and temporal scales, and from the demands of contemporary environmental science, are then introduced, and these lead to a conclusion that geomorphology might more appropriately be assessed against (or seen as part of) a more locally orientated ESS, which we term LESS. Copyright © 2008 John Wiley & Sons, Ltd. [source] Ecological relationships between stream communities and spatial scale: implications for designing catchment-level monitoring programmesFRESHWATER BIOLOGY, Issue 5 2007RICHARD K. JOHNSON Summary 1. Stream communities are structured by factors acting over multiple spatial and temporal scales. Identifying what factors are driving spatial patterns in stream communities is a central aim of ecology. 2. Here we used two large European data sets of fish, invertebrates, macrophytes, benthic diatoms and environmental data in two stream groups (lowland and mountain) to determine the importance of variables at different spatial scales (geographical, regional, local) on community structure. 3. Both geographical position and ecoregion were selected first in canonical correspondence analysis (CCA), clearly showing the broad spatial gradients covered in the data set. Secondary predictors (after accounting for spatial and/or ecoregion effects) were similar between stream groups and among the four organism groups. In particular, conductivity and N concentration were strong predictors reflecting catchment land use. 4. Using partial CCA, we assessed the individual importance of the three spatial scales on the community structure of the four organism groups in the two stream groups. The majority of among-site variability (22,29%) was accounted for by local scale variables (e.g. water chemistry and substratum type), with regional and spatial variables accounting 11,13% and 5,6%, respectively. Our findings indicate that the four organism groups are responding similarly to the different levels of spatial scale, implying much redundancy which should be consider when implementing studies of bioassessment. [source] Changes in hydrology and erosion over a transition from grassland to shrublandHYDROLOGICAL PROCESSES, Issue 4 2010Laura Turnbull Abstract The degradation of grasslands is a common problem across semi-arid areas worldwide. Over the last 150 years, much of the south-western United States has experienced significant land degradation, with desert grasslands becoming dominated by shrubs and concurrent changes in runoff and erosion which are thought to propagate further the process of degradation. Plot-based experiments to determine how spatio-temporal characteristics of soil moisture, runoff and erosion change over a transition from grassland to shrubland were carried out at four sites over a transition from black grama (Bouteloua eriopoda) grassland to creosotebush (Larrea tridentata) shrubland at the Sevilleta NWR LTER site in New Mexico. Each site consisted of a 10 × 30 m bounded runoff plot and adjacent characterization plots with nested sampling points where soil moisture content was measured. Results show distinct spatio-temporal variations in soil moisture content, which are due to the net effect of processes operating at multiple spatial and temporal scales, such as plant uptake of water at local scales versus the redistribution of water during runoff events at the hillslope scale. There is an overall increase in runoff and erosion over the transition from grassland to shrubland, which is likely to be associated with an increase in connectivity of bare, runoff-generating areas, although these increases do not appear to follow a linear trajectory. Erosion rates increased over the transition from grassland to shrubland, likely related in part to changes in runoff characteristics and the increased capacity of the runoff to detach, entrain and transport sediment. Over all plots, fine material was preferentially eroded which has potential implications for nutrient cycling since nutrients tend to be associated with fine sediment. Copyright © 2009 John Wiley & Sons, Ltd. [source] Ecometrics: The traits that bind the past and present togetherINTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 2 2010Jussi T. ERONEN Abstract We outline here an approach for understanding the biology of climate change, one that integrates data at multiple spatial and temporal scales. Taxon-free trait analysis, or "ecometrics," is based on the idea that the distribution in a community of ecomorphological traits such as tooth structure, limb proportions, body mass, leaf shape, incubation temperature, claw shape, any aspect of anatomy or physiology can be measured across some subset of the organisms in a community. Regardless of temporal or spatial scale, traits are the means by which organisms interact with their environment, biotic and abiotic. Ecometrics measures these interactions by focusing on traits which are easily measurable, whose structure is closely related to their function, and whose function interacts directly with local environment. Ecometric trait distributions are thus a comparatively universal metric for exploring systems dynamics at all scales. The main challenge now is to move beyond investigating how future climate change will affect the distribution of organisms and how it will impact ecosystem services and to shift the perspective to ask how biotic systems interact with changing climate in general, and how climate change affects the interactions within and between the components of the whole biotic-physical system. We believe that it is possible to provide believable, quantitative answers to these questions. Because of this we have initiated an IUBS program iCCB (integrative Climate Change Biology). [source] Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional caseINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2002Jacob Fish Abstract Non-local dispersive model for wave propagation in heterogeneous media is derived from the higher-order mathematical homogenization theory with multiple spatial and temporal scales. In addition to the usual space,time co-ordinates, a fast spatial scale and a slow temporal scale are introduced to account for rapid spatial fluctuations of material properties as well as to capture the long-term behaviour of the homogenized solution. By combining various order homogenized equations of motion the slow time dependence is eliminated giving rise to the fourth-order differential equation, also known as a ,bad' Boussinesq problem. Regularization procedures are then introduced to construct the so-called ,good' Boussinesq problem, where the need for C1 continuity is eliminated. Numerical examples are presented to validate the present formulation. Copyright © 2002 John Wiley & Sons, Ltd. [source] Biotic homogenization: a new research agenda for conservation biogeographyJOURNAL OF BIOGEOGRAPHY, Issue 12 2006Julian D. Olden Abstract Aim, Biotic homogenization describes the process by which species invasions and extinctions increase the genetic, taxonomic or functional similarity of two or more biotas over a specified time interval. The study of biotic homogenization is a young and rapidly emerging research area in the budding field of conservation biogeography, and this paper aims to synthesize our current knowledge of this process and advocate a more systematic approach to its investigation. Methods, Based on a comprehensive examination of the primary literature this paper reviews the process of biotic homogenization, including its definition, quantification, underlying ecological mechanisms, environmental drivers, the empirical evidence for different taxonomic groups, and the potential ecological and evolutionary implications. Important gaps in our knowledge are then identified, and areas of new research that show the greatest promise for advancing our current thinking on biotic homogenization are highlighted. Results, Current knowledge of the patterns, mechanisms and implications of biotic homogenization is highly variable across taxonomic groups, but in general is incomplete. Quantitative estimates are almost exclusively limited to freshwater fishes and plants in the United States, and the principal mechanisms and drivers of homogenization remain elusive. To date research has focused on taxonomic homogenization, and genetic and functional homogenization has received inadequate attention. Trends over the past decade, however, suggest that biotic homogenization is emerging as a topic of greater research interest. Main conclusions, My investigation revealed a number of important knowledge gaps and priority research needs in the science of biotic homogenization. Future studies should examine the homogenization process for different community properties (species occurrence and abundance) at multiple spatial and temporal scales, with careful attention paid to the various biological mechanisms (invasions vs. extinctions) and environmental drivers (environmental alteration vs. biotic interactions) involved. Perhaps most importantly, this research should recognize that there are multiple possible outcomes resulting from the accumulation of species invasions and extinctions, including biotic differentiation whereby genetic, taxonomic or functional similarity of biotas decreases over time. [source] |