Home About us Contact | |||
Multiple Sclerosis Lesions (multiple + sclerosis_lesion)
Selected AbstractsEvidence for shutter-speed variation in CR bolus-tracking studies of human pathologyNMR IN BIOMEDICINE, Issue 3 2005Thomas E. Yankeelov Abstract The standard pharmacokinetic model for the analysis of MRI contrast reagent (CR) bolus-tracking (B-T) data assumes that the mean intracellular water molecule lifetime (,i) is effectively zero. This assertion is inconsistent with a considerable body of physiological measurements. Furthermore, theory and simulation show the B-T time-course shape to be very sensitive to the ,i magnitude in the physiological range (hundreds of milliseconds to several seconds). Consequently, this standard model aspect can cause significant underestimations (factors of 2 or 3) of the two parameters usually determined: Ktrans, the vascular wall CR transfer rate constant, and ve, the CR distribution volume (the extracellular, extravascular space fraction). Analyses of animal model data confirmed two predicted behaviors indicative of this standard model inadequacy: (1) a specific temporal pattern for the mismatch between the best-fitted curve and data; and (2) an inverse dependence of the curve's Ktrans and ve magnitudes on the CR dose. These parameters should be CR dose-independent. The most parsimonious analysis allowing for realistic ,i values is the ,shutter-speed' model. Its application to the experimental animal data essentially eliminated the two standard model signature inadequacies. This paper reports the first survey for the extent of this ,shutter-speed effect' in human data. Retrospective analyses are made of clinical data chosen from a range of pathology (the active multiple sclerosis lesion, the invasive ductal carcinoma breast tumor, and osteosarcoma in the leg) that provides a wide variation, particularly of Ktrans. The signature temporal mismatch of the standard model is observed in all cases, and is essentially eliminated by use of the shutter-speed model. Pixel-by-pixel maps show that parameter values from the shutter-speed analysis are increased by more than a factor of 3 for some lesion regions. This endows the lesions with very high contrast, and reveals heterogeneities that are often not seen in the standard model maps. Normal muscle regions in the leg allow validation of the shutter-speed model Ktrans, ve, and ,i magnitudes, by comparison with results of previous careful rat leg studies not possible for human subjects. Copyright © 2004 John Wiley & Sons, Ltd. [source] Cellular localization and expression patterns of interleukin-10, interleukin-4, and their receptors in multiple sclerosis lesionsGLIA, Issue 1 2002Sandra Hulshof Abstract Cytokines have been shown to play a crucial role in the pathogenesis of multiple sclerosis (MS). However, still limited data are available on the expression of anti-inflammatory cytokines within the central nervous system (CNS) during MS lesion development. Therefore, we have examined the expression of the anti-inflammatory cytokines, interleukin-10 (IL-10) and IL-4, and their specific receptors, IL-10R and IL-4R, in postmortem human brain tissue obtained from MS patients. Specific patterns of protein localization and expression for both proteins could be observed within active and chronic MS lesions. Strongest IL-10 immunoreactivity was observed in reactive astrocytes within active demyelinating lesions and the hypercellular rim of chronic active MS lesions. Moreover, perivascular macrophages were immunoreactive for IL-10 in (chronic) active MS lesions. Most intense IL-4 immunoreactivity was detected in reactive fibrillary astrocytes within the hypocellular regions of chronic active and chronic inactive MS lesions. Strong immunoreactivity for IL-10R and IL-4R was detected on macrophages in both parenchymal and perivascular areas and on reactive astrocytes in active and chronic MS lesions. Our results indicate that IL-10 and IL-4 have an active role in CNS immune responses. The specific patterns of protein localization and protein expression for both IL-10 and IL-4 in MS lesions at different stages of development suggest that these anti-inflammatory cytokines and their receptors participate in processes leading to the formation of chronic MS lesions. GLIA 38:24,35, 2002. © 2002 Wiley-Liss, Inc. [source] Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mappingHUMAN BRAIN MAPPING, Issue 4 2009Michaël Sdika Abstract Morphometric studies of medical images often include a nonrigid registration step from a subject to a common reference. The presence of white matter multiple sclerosis lesions will distort and bias the output of the registration. In this article, we present a method to remove this bias by filling such lesions to make the brain look like a healthy brain before the registration. We finally propose a dedicated method to fill the lesions and present numerical results showing that our method outperforms current state of the art method. Hum Brain Mapp, 2009. © 2008 Wiley-Liss, Inc. [source] Quantitative magnetization transfer mapping of bound protons in multiple sclerosisMAGNETIC RESONANCE IN MEDICINE, Issue 1 2003D. Tozer Abstract Quantitative analysis of magnetization transfer images has the potential to allow a more thorough characterization of the protons, both bound and free, in a tissue by extracting a number of parameters relating to the NMR properties of the protons and their local environment. This work develops previously presented techniques to produce estimates of parameters such as the bound proton fraction, f, and the transverse relaxation time of the bound pool, T2B, for the whole brain in a clinically acceptable imaging time. This is achieved by limiting the number of data collected (typically to 10); to collect 28 5-mm slices with a reconstructed resolution of 0.94 × 0.94 mm. The protocol takes 82 sec per data point. The fitting technique is assessed against previous work and for fitting failures. Maps and analysis are presented from a group of seven controls and 20 multiple sclerosis patients. The maps show that the parameters are sensitive to tissue-specific differences and can detect pathological change within lesions. Statistically significant differences in parameters such as T2B and f are seen between normal-appearing white matter, multiple sclerosis lesions, and control white matter. Whole-brain histograms of these parameters are also presented, showing differences between patients and controls. Magn Reson Med 50:83,91, 2003. © 2003 Wiley-Liss, Inc. [source] PECAM-1 and gelatinase B coexist in vascular cuffs of multiple sclerosis lesionsNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 1 2006I. Nelissen In multiple sclerosis (MS), the matrix metalloprotease (MMP) gelatinase B/MMP-9 and platelet endothelial cell adhesion molecule (PECAM)-1 have both been implicated in trans-endothelial infiltration of leucocytes into the brain, but their functional connection has not yet been investigated. We investigated the expression of gelatinase B and PECAM-1 in ,post mortem brains of MS patients by immunohistochemistry. Because increased soluble PECAM-1 serum levels have been observed in MS patients, we also tested in vitro whether this could be due to cleavage of PECAM-1 by gelatinase B or matrilysin-1/MMP-7. Constitutive expression of PECAM-1 was found on brain endothelial cells, whilst in active MS lesions cell-bound PECAM-1 was highly up-regulated on foamy macrophages in perivascular infiltrates and co-localized with gelatinase B. However, human THP-1 monocyte-bound or soluble recombinant PECAM-1 were both resistant to proteolytic cleavage by gelatinase B or matrilysin-1 in vitro, as demonstrated by Western blot analysis and flow cytometry. These results suggest that PECAM-1 and gelatinase B may complement each other during the transmigration of the blood,brain barrier by mononuclear cells. [source] Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesionsANNALS OF NEUROLOGY, Issue 2 2008Jacqueline T. Chen PhD Objective To assess demyelination and remyelination in vivo in acute gadolinium (Gd)-enhancing lesions of multiple sclerosis (MS). Methods We measured significant changes in magnetization transfer ratio (MTR) consistent with demyelination and remyelination of individual lesion voxels, as well as the mean normalized MTR over all lesion voxels during and after contrast enhancement, in MS patients participating in a 3-year Canadian trial assessing immunoablation and autologous stem cell transplantation for treatment of MS. Results The average mean normalized lesion MTR over all lesions exhibited partial recovery over 2 to 4 months after Gd enhancement. Voxel-based analysis demonstrated that approximately 70% of the initially enhancing lesion volume (GdLV) was left with stably low MTR over 39 months of evaluation. The percentage of the GdLV undergoing significant increases in MTR consistent with remyelination increased for approximately 7 months after enhancement and then stabilized at 21 %GdLV. Significant decreases in MTR consistent with demyelination were ongoing for approximately 33 months after enhancement, stabilizing at 9 %GdLV. The estimated error of these measurements, based on scan/rescan analysis, was less than 0.4 %GdLV. Interpretation We found significant changes in MTR consistent with demyelination and remyelination that followed different temporal evolutions and were ongoing in different lesion regions for at least 3 years after lesion formation. Ann Neurol 2008 [source] |