Multiple Receptors (multiple + receptor)

Distribution by Scientific Domains


Selected Abstracts


Growth Hormone Secretagogue Actions On The Pituitary Gland: Multiple Receptors For Multiple Ligands?

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 5-6 2000
Chen Chen
SUMMARY 1. Growth hormone (GH) secretion is thought to occur under the reciprocal regulation of two hypothalamic hormones, namely GH-releasing hormone (GHRH) and somatostatin (SRIF), through their engagement with specific cell-surface receptors on the anterior pituitary somatotropes. 2. In addition to GHRH and SRIF, synthetic GH-releasing peptides (GHRP) or GH secretagogue(s) (GHS) regulate GH release through the activation of a novel receptor, the GHS receptor (GHS-R). 3. The cloning of the GHS-R from human, swine and rat identifies a novel G-protein-coupled receptor involved in the control of GH secretion and supports the existence of an undiscovered hormone that may activate this receptor. 4. Varieties of intracellular signalling systems are suggested to mediate the action of GHS, which include changes in intracellular free Ca2+ ([Ca2+]i), cAMP, protein kinases A and C, phospholipase C etc. 5. With regard to the use of signalling systems by GHS, especially a new form of GHRP or GHRP-2, a clear species difference has been demonstrated, supporting the possibility of more than one type of GHS-R. [source]


Involvement of phosphatidylserine, ,v,3, CD14, CD36, and complement C1q in the phagocytosis of primary necrotic lymphocytes by macrophages

ARTHRITIS & RHEUMATISM, Issue 3 2006
Andrea Böttcher
Objective Uningested dead cells may be an important source of autoantigens and may trigger autoimmune diseases such as systemic lupus erythematosus (SLE). Multiple receptors involved in the clearance of apoptotic cells have been described; however, little is known about the receptors and ligands involved in uptake of necrotic cells that release autoantigens as well. Methods The uptake of autologous necrotic peripheral blood lymphocytes into human monocyte-derived macrophages was qualitatively and quantitatively monitored by confocal microscopy and 2-color flow cytometry, respectively. Blocking experiments were performed to examine the receptors and molecules involved in the phagocytosis of necrotic cells. Cytokine secretion by lipopolysaccharide-activated monocytes and macrophages was determined by enzyme-linked immunosorbent assay. Results Phosphatidylserine, which was exposed on necrotic as well as apoptotic cells, promoted the recognition and removal of primary necrotic lymphocytes. Several macrophage receptor systems, including the thrombospondin,CD36,,v,3 complex, CD14, and the complement component C1q, contributed to the engulfment of necrotic cells. Necrotic peripheral blood lymphocytes slightly increased the lipopolysaccharide-induced secretion of interleukin-10 and reduced the secretion of tumor necrosis factor , in monocytes and macrophages. Conclusion Our results indicate that at least some of the receptors and adaptors mediating the uptake of apoptotic cells are also involved in the clearance of necrotic cells. Hence, necrotic cells engage phagocyte receptors such as CD36, which mediate antiinflammatory signals from apoptotic cells. Necrotic cells consequently also have the potency to provide antiinflammatory signals to phagocytes; however, these signals may be overridden by proinflammatory factors released during necrosis. These findings have implications regarding the etiopathogenesis of autoimmune diseases such as SLE, in which impaired clearance of dead cells may foster autoimmunity by the release of potential autoantigens. [source]


TYRA-2 (F01E11.5): a Caenorhabditis elegans tyramine receptor expressed in the MC and NSM pharyngeal neurons

JOURNAL OF NEUROCHEMISTRY, Issue 1 2005
Elizabeth Rex
Abstract Tyramine appears to regulate key processes in nematodes, such as pharyngeal pumping, and more complex behaviors, such as foraging. Recently, a Caenorhabditis elegans tyramine receptor, SER-2, was identified that is involved in the TA-dependent regulation of these processes. In the present study, we have identified a second C. elegans gene, tyra-2 (F01E11.5) that encodes a tyramine receptor. This is the first identification of multiple tyramine receptor genes in any invertebrate. Membranes from COS-7 cells expressing TYRA-2 bind [3H]tyramine with high affinity with a Kd of 20 ± 5 nm. Other physiologically relevant biogenic amines, such as octopamine and dopamine, inhibit [3H]tyramine binding with much lower affinity (Kis of 1.55 ± 0.5 and 1.78 ± 0.6 ,m, respectively), supporting the identification of TYRA-2 as a tyramine receptor. Indeed, tyramine also dramatically increases GTP,S binding to membranes from cells expressing TYRA-2 (EC50 of 50 ± 13 nm) and the TA-dependent GTP,S binding is PTX-sensitive suggesting that TYRA-2 may couple to G,i/o. Based on fluorescence from tyra::gfp fusion constructs, TYRA-2 expression appears to be exclusively neuronal in the MC and NSM pharyngeal neurons, the AS family of amphid neurons and neurons in the nerve ring, body and tail. Taken together, these results suggest that TYRA-2 encodes a second G,i/o -coupled tyramine receptor and suggests that TA-dependent neuromodulation may be mediated by multiple receptors and more complex than previously appreciated. [source]


Nitric oxide specifically inhibits integrin-mediated platelet adhesion and spreading on collagen

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 12 2008
W. ROBERTS
Summary.,Background:,Nitric oxide (NO) inhibits platelet adhesion to collagen, although the precise molecular mechanisms underlying this process are unclear. Objectives:,Collagen-mediated adhesion is a multifaceted event requiring multiple receptors and platelet-derived soluble agonists. We investigated the influence of NO on these processes. Results:,S-nitrosoglutathione (GSNO) induced a concentration-dependent inhibition of platelet adhesion to immobilized collagen. Maximal adhesion to collagen required platelet-derived ADP and TxA2. GSNO-mediated inhibition was lost in the presence of apyrase and indomethacin, suggesting that NO reduced the availability of, or signaling by, ADP and TxA2. Exogenous ADP, but not the TxA2 analogue U46619, reversed the inhibitory actions of GSNO on adhesion. Under adhesive conditions NO inhibited dense granule secretion but did not influence TxA2 generation. These data indicated that NO may block signaling by TxA2 required for dense granule secretion, thereby reducing the availability of ADP. Indeed, we found TxA2 -mediated activation of PKC was required to drive dense granule secretion, a pathway that was inhibited by NO. Because our data demonstrated that NO only inhibited the activation-dependent component of adhesion, we investigated the effects of NO on individual collagen receptors. GSNO inhibited platelet adhesion and spreading on ,2,1 specific peptide ligand GFOGER. In contrast, GSNO did not inhibit GPVI-mediated adhesion to collagen, or adhesion to the GPVI specific ligand, collagen related peptide (CRP). Conclusions:,NO targets activation-dependent adhesion mediated by ,2,1, possibly by reducing bioavailability of platelet-derived ADP, but has no effect on activation-independent adhesion mediated by GPVI. Thus, NO regulates platelet spreading and stable adhesion to collagen. [source]


Leukotriene pathway genetics and pharmacogenetics in allergy

ALLERGY, Issue 6 2009
N. P. Duroudier
Leukotrienes (LT) are biologically active lipid mediators known to be involved in allergic inflammation. Leukotrienes have been shown to mediate diverse features of allergic conditions including inflammatory cell chemotaxis/activation and smooth muscle contraction. Cysteinyl leukotrienes (LTC4, LTD4 and, LTE4) and the dihydroxy leukotriene LTB4 are generated by a series of enzymes/proteins constituting the LT synthetic pathway or 5-lipoxygenase (5-LO) pathway. Their function is mediated by interacting with multiple receptors. Leukotriene receptor antagonists (LTRA) and LT synthesis inhibitors (LTSI) have shown clinical efficacy in asthma and more recently in allergic rhinitis. Despite growing knowledge of leukotriene biology, the molecular regulation of these inflammatory mediators remains to be fully understood. Genes encoding enzymes of the 5-LO pathway (i.e. ALOX5, LTC4S and LTA4H) and encoding for LT receptors (CYSLTR1/2 and LTB4R1/2) provide excellent candidates for disease susceptibility and severity; however, their role remains unclear. Preliminary data also suggest that 5-LO pathway/receptor gene polymorphism can predict patient responses to LTSI and LTRA; however, the exact mechanisms require elucidation. The aim of this review was to summarize the recent advances in the knowledge of these important mediators, focusing on genetic and pharmacogenetic aspects in the context of allergic phenotypes. [source]


Odor discrimination by G protein-coupled olfactory receptors

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2002
Kazushige Touhara
Abstract The vertebrate olfactory system possesses a remarkable capacity to recognize and discriminate a variety of odorants by sending the coding information from peripheral olfactory sensory neurons in the olfactory epithelium to the olfactory bulb of the brain. The recognition of odorants appear to be mediated by a G protein-coupled receptor superfamily that consists of ,1% of total genes in vertebrates. Since the first discovery of the olfactory receptor gene superfamily in the rat, similar chemosensory receptors have been found in various species across different phyla. The functions of these receptors, however, had been uncharacterized until the recently successful functional expression and ligand screening of some olfactory receptors in various cell expression systems. The functional cloning of odorant receptors from single olfactory neurons allowed for the identification of multiple receptors that recognized a particular odorant of interest. Reconstitution of the odorant responses demonstrated that odorant receptors recognized various structurally-related odorant molecules with a specific molecular receptive range, and that odor discrimination is established based on a combinatorial receptor code model in which the identities of different odorants are encoded by a combination of odorant receptors. The receptor code for an odorant changes at different odorant concentrations, consistent with our experience that perceived quality of an odorant changes at different concentrations. The molecular bases of odor discrimination at the level of olfactory receptors appear to correlate well with the receptive field in the olfactory bulb where the input signal is further processed to create the specific odor maps. Microsc. Res. Tech. 58:135,141, 2002. © 2002 Wiley-Liss, Inc. [source]


Homologous protein import machineries in chloroplasts and cyanelles,

THE PLANT JOURNAL, Issue 4 2005
Jürgen M. Steiner
Summary The cyanelles of the glaucocystophyte alga Cyanophora paradoxa resemble endosymbiotic cyanobacteria, especially in the presence of a peptidoglycan wall between the inner and outer envelope membranes. However, it is now clear that cyanelles are in fact primitive plastids. Phylogenetic analyses of plastid, nuclear and mitochondrial genes support a single primary endosymbiotic event. In this scenario, cyanelles and all other plastid types are derived from an ancestral photosynthetic organelle combining the high gene content of rhodoplasts and the peptidoglycan wall of cyanelles. This means that the import apparatuses of all primary plastids, i.e. those from glaucocystophytes, red algae, green algae and higher plants, should be homologous. If this is the case, then transit sequences should be similar and heterologous import experiments feasible. Thus far, heterologous in vitro import has been shown in one direction only: precursors from C. paradoxa were imported into isolated pea or spinach chloroplasts. Cyanelle transit sequences differ from chloroplast stroma targeting peptides in containing in their N-terminal domain an invariant phenylalanine residue which is shown here to be crucial for import. In addition, we now demonstrate that heterologous precursors are readily imported into isolated cyanelles, provided that the essential phenylalanine residue is engineered into the N-terminal part of chloroplast transit peptides. The cyanelle and likely also the rhodoplast import apparatus can be envisaged as prototypes with a single receptor/channel showing this requirement for N-terminal phenylalanine. In chloroplasts, multiple receptors with overlapping and less stringent specificities have evolved, explaining the efficient heterologous import of native precursors from C. paradoxa. [source]